

KS-Dokumentation

Technisches Nachschlagewerk für Kalksandstein-Mauerwerke

INHALTSVERZEICHNIS

HUNZIKER KALKSANDSTEIN

03	BAUSTOFF	– Erstklassiger Baustoff
		für heutige Anforderungen
04	KALKSANDSTEIN	Geschichte
05		– Rohstoffe
06		– Herstellung
07-10	VORTEILE	Schallschutz
11		- Brandschutz
12-13		- Raumklima
14		– Bauökologie
15		 Erdbebensicherheit
16		– Vielseitigkeit / Wertbeständigkeit
17		 Massgenauigkeit
18	KONSTRUKTIONEN	– Tragende Wände
19 – 24		– Nichttragende Wände
25		 Oberflächenbeschichtung
26		Leitungsführung
27 – 40		– Aussenwandsysteme

KALKSANDSTEIN NORMALMÖRTEL

41–42	BAUSTOFFKENNWERTE	 Kennwerte KS Mauerwerk / Mauersteine mit Normalmörtel
40 44	TEOL IN 110 OLUE AND A DEN	
43 – 44	TECHNISCHE ANGABEN	– zur Ausführung von Kalksandstein-Mauerwerk
45	TECHNISCHE BERATUNG	– Kalksandstein
46-47	KALKSANDSTEINE K	– Wandstärken 100 + 120 mm
48		– Wandstärke 150 mm / Spezialsteine
49		– Wandstärke 180 mm / Spezialsteine
50		– Wandstärke 200 mm
51		– Spezialsteine VER
52-54	BETONSTÜRZE	– zu Kalksandstein Mauerwerk
55	ZUBEHÖR	

KALKSANDSTEIN DÜNNBETTMÖRTEL

56	DAS H+H BAUSYSTEM		
57	PLANUNGSSERVICE FÜR DAS H+H BAUSYSTEM		
58	TECHNISCHE ANGABEN	– KS-Mittelformat / Akustik / Akustik Plus	
59		– KS- und KS-ISO Ausgleichsteine	
60		– KS QUADRO <i>E</i>	
61		– KS-Stürze / KS-Ergänzungsformate	

BAUSTOFF

ERSTKLASSIGER BAUSTOFF FÜR HEUTIGE ANFORDERUNGEN

Dank einer Vielzahl von Vorteilen hat sich der Kalksandstein seit Jahrzehnten bewahrt und gehört zu den traditionsreichsten Baustoffen in der Schweiz. Kalksandsteine werden seit über 100 Jahren für Gewerbe-, Industrie- und Wohnbauten im Innen- und Aussenbereich erfolgreich eingesetzt. Ob tragend oder nicht tragend, verputzt oder unverputzt, der Kalksandstein bietet eine Fülle von gestalterischen Möglichkeiten.

Kalksandstein-Mauerwerk überzeugt in jeder Hinsicht:

SCHALLSCHUTZ

Durch seine hohe Rohdichte (Masse) dämmen Kalksandsteine den Lärm und dies selbst bei schlanken Wänden.

BRANDSCHUTZ

Kalksandstein Mauerwerke weisen eine hohe Feuerwiderstandsfähigkeit auf.

RAUMKLIMA

Durch seine Speicherfähigkeit sorgt der Kalksandstein für eine ausgeglichene Raumtemperatur und ein dauerhaft angenehmes Raumklima.

ÖKOLOGIE

Der 100 % natürliche Baustein weist eine hervorragende Ökobilanz auf.

ERDBEBENSICHERHEIT

Die Konstruktionen mit Mauerwerk in der Schweiz sind auf diese Herausforderung vorbereitet und können den geforderten Nachweis der Erdbebensicherheit überzeugend erbringen.

MASSGENAUIGKEIT

Das Kalksandstein Mauerwerk wird sehr präzis und sauber erstellt.

ÄSTHETIK

Der Kalksandstein ist witterungsbeständig und sorgt dafür, dass das gute Aussehen des Bauwerkes lange erhalten bleibt. Die Oberfläche kann individuell gewählt werden und bleibt eine Freude fürs Auge.

LEBENSDAUER

Kalksandstein-Aussenfassaden sind widerstandsfähig gegen sämtliche Umwelteinflüsse. Geringe Unterhaltskosten macht das Kalksandstein-Mauerwerk zur beständigen und kostengünstigen Lösung.

KALKSANDSTEIN

GESCHICHTE

Vom Kalkmörtel zum Kalkmörtel-Stein

Die Kenntnis, dass Kalkstein durch Brennen als Verbindungsmaterial von Gesteinsbrocken genutzt werden kann, reicht weit in die Vergangenheit zurück. Speziell im Juragebiet der Schweiz sind noch Erzeugnisse urzeitlicher Kalkstein-Brennstellen vorhanden. Die technisch versierten Römer verfeinerten und beherrschten den Umgang mit dem wundersamen Kalkmörtel und bauten ganze Städte damit. Heute noch bestehende Aquädukte zeugen von der Dauerhaftigkeit der Verbindung Kalkmörtel-Stein.

Die Idee, den Kalk als Bindemittel für einen Wandbaustein zu verwenden, wurde erst ab 1800 ernsthaft verfolgt. So ging die Entwicklung von Rydin, einem schwedischen Architekten, der versuchte, ganze Häuser aus Kalksandmörtel zu giessen, über Prochon, der aus dem gleichen Material einzelne Wände stampfte, hin zum deutschen Arzt Dr. Bernhardi, der 1854 mit einer handbetriebenen Hebelpresse die ersten luftgehärteten Kalkmörtel-Mauersteine fertigte.

Geburtstunde des Kalksandstein

Der luftgehärtete Kalkmörtel-Mauerstein hatte aber nur geringe Druckfestigkeit. Der natürliche Sandstein half den Tüftlern und Erfindern zum Durchbruch: Die Sandsteinbildung erfolgt in der Natur unter Kieselsäurebildung und Verbindung des Sandkorns über sehr lange geologische Zeiträume. Dr. Wilhelm Michaelis, Der Baustoffchemiker aus Berlin, war der erste, der eine Mischung aus Kalk, Sand und Wasser unter Dampfdruck härtete.

Die von ihm 1880 eingereichte Patentschrift No. 14195 "Verfahren zur Erzeugung von Kunstsandstein" gilt deshalb als eigentlicher Durchbruch. 1894 kam schlussendlich die erste Presse in Neumünster in den Betrieb, gleichzeitig wurde auch herausgefunden, dass vor dem Pressen ein Lagern des Mischgutes für den Löschprozess des Kalkes unbedingt notwendig ist. Die erfolgreiche industrielle Fertigung von Kalksandsteinen konnte beginnen.

Die Geschichte des Kalksandstein in der Schweiz

Die Rohstoffvorkommen mit Natursanden und gebrochenem Kies mit hohem Quarzgehalt in der Schweiz eignen sich hervorragend für das Qualitätsprodukt Kalksandstein.

1899	Erste Produktion von Schweizer Kalksandsteinen
	in der Steinfabrik Zürichersee EG in Pfäffikon SZ.

1907	Bau der KS-Fabrik Brugg nach den Plänen der
	Elbinger Maschinenfabriken für
	Herrn Hans Hunziker

1911	Rau	dor	Fahrik	Hunziker	8.Cia	AC in	Oltan
1911	Dau	uer	rablik	nullziker	acie	AG III	Oiten

1912	Bau einer KS-Fabrik in Brig zur Fabrikation von
	Tunnelsteinen für den Simplontunnel

1927	Bau der KS-Fabrik der Kanderkies in Einigen
	am Thunersee

1955	Bau der KS-Werke in Dietikon und Volketswil
1988	Stilllegung des Werkes Dietikon
1996	Stilllegung des ersten Werkes nach 97 Jahren
2002	Stilllegung des Werkes Olten
2009	Einführung der KS-QUADRO E am Schweizer Markt

2018 Übernahme des Aktiven Kapitals durch die H+H mit Sitz in Kopenhagen

KALKSANDSTEIN

ROHSTOFFE

Die Rohstoffe sind der Ursprung aller ökologischen Eigenschaften von Kalksandstein

KALK (CaO)

SAND (SiO₂)

WASSER (H₂O)

Kalk

Eingesetzt wird ein gebrannter, fein gemahlener Weissfeinkalk gemäss der Norm EN 459-1 CL90-Q.

Dieser Weissfeinkalk muss folgende Kriterien erfüllen:

- hoher CaO-Gehalt
- hohe Reaktionsfähigkeit damit der Löschprozess im Reaktor vollständig ablaufen kann
- ausreichende Feinkörnigkeit, um ein gleichmässiges Einmischen des Kalkes in den Sand zu ermöglichen

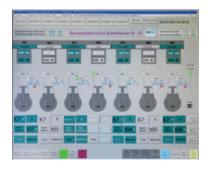
Die Dosierung erfolgt zwischen 6-8 Gewichtsprozenten.

Sandgemisch 0-4 mm

Der Kalksandstein besteht zu über 90 % aus Sand. Dabei muss jeder Hersteller das Optimum aus den Vorkommen in seiner Region suchen. Grundsätzlich müssen die Sande

- einen hohen SiO₂-Gehalt
- optimale Mischung der Kornoberfläche (rundes und gebrochenes Korn)
- genügend Feinanteil
- keine Verunreinigung (z. B. Holz usw.)

aufweisen. Wichtig ist auch eine konstante Sieblinie für eine gleichmässige Oberfläche.


Wasser

Das Wasser begleitet die Entstehung des Kalksandsteines von Anfang bis zum Ende. Im Vormischer zur Auslösung des Löschprozesses, im Nachmischer zur optimalen Einstellung der Pressfeuchte. Im weiteren Verlauf werden die Kalksandsteine in mit Wasser gesättigtem Dampf des Autoklaven gehärtet.

Der Löschprozess lässt sich nach der Formel:

 $CaO + H_2O \rightarrow CO (OH)_2 (Kalkhydrat)$ + 1.187 kJ/kg CaO bei 50 °C

chemisch darstellen.

Der Härtevorgang läuft sehr viel komplexer ab: Die Kieselsäure (SiO₂) bildet mit dem Kalkhydrat (Ca. [OH]₂) kristalline Bindemittelphasen (sogenannte **CSH-Phasen**), die auf die **Sandkörner** aufwachsen und diese fest miteinander verzahnen. Sie sorgen für die hohe mechanische Festigkeit des Kalksandsteingefüges.

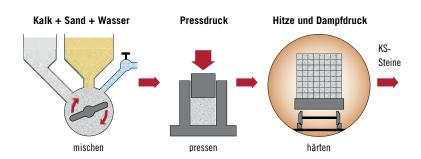
KALKSANDSTEIN

HERSTELLUNG

Wie werden Kalksandsteine hergestellt?

Kalksandsteine werden aus den natürlichen Rohstoffen Kalk, Sand und Wasser hergestellt. Der Vorgang läuft wie folgt ab:

- Kalk und Sand aus heimischen Abbaustätten werden im Werk in Silos gelagert. Die Rohstoffe werden nach Gewicht dosiert, intensiv vermischt und über eine Förderanlage in den Reaktionsbehälter geleitet.
- 2. Im Reaktionsbehälter löscht der Branntkalk zu Kalkhydrat ab, das anschliessend im Nachmischer auf Pressfeuchte gebracht wird.


- **3.** Mit vollautomatisch arbeitenden Pressen werden die Steinrohlinge geformt.
- **4.** Es folgt das Härten der Rohlinge unter geringem Energieaufwand bei Temperaturen von 160 bis 200 °C und einem Dampfdruck von 12–16 bar. Dabei entstehen keine Schadstoffe.
- 5. Nach dem Härten und Abkühlen sind die Steine gebrauchsfertig und können nach dem Paketieren oder ab Zwischenlager abgeholt und auf die Baustelle geliefert werden.

Bei der Produktion werden Abfallprodukte vermieden. Kalksandstein mit anhaftenden Mörtelresten aus dem Rückbau von Gebäuden oder aus Produktionsabfällen kann erneut in den Produktionsprozess oder andere Baustoffbereiche eingebracht werden.

SCHALLSCHUTZ

Kalksandstein sorgt für mehr Ruhe

Schutz vor Lärm ist von grosser Bedeutung für das Wohlbefinden. Wie Menschen auf Schall reagieren hängt von zahlreichen Faktoren ab. Schädliche Wirkungen setzen bereits bei Pegelbelastungen um 60 dB ein. Die Reaktionen auf Belästigungen sind vielfältig.

Zur Erreichung hoher Luftschalldämmungen sind dem Schall möglichst schwere Hindernisse in den Weg zu stellen. Die sehr hohe Rohdichte von Kalksandstein erfüllt diese Anforderungen auch bei schlanken Wänden optimal, "schwer ist besser als dick" heisst die Devise. So ist zum Beispiel für Wände mit einem Schalldämmmass von R'w=52 dB ein Wandflächengewicht von etwa 350 kg/m² erforderlich.

Die bekannten Kalksandstein-Mauerwerkkonstruktionen im Aussenwandund Innenwandbereich bedürfen keines besonderen Nachweises, sie sind schallschutztechnisch überprüft und haben sich seit Jahrzehnten bewährt.

Schallschutz-Rechenprogramm

Planen Sie den erhöhten Schallschutz von Anfang an ein. Mit dem einfach handhabbaren Hilfsmittel, dem Schallschutzrechner, kann der Schallschutz einfach und genau berechnet werden. Dieser ist auf unserer Internetseite unter www.hunziker-kalksandstein.ch zu finden.

Profitieren Sie unter anderem von:

- einem einfachen und schnellen Vergleich zu anderen Baustoffen.
- der exakten Ermittlung der Luft- und Trittschalldämmung sowie dem Schallschutz gegen Aussenlärm.
- der Berechnung nach der Europäischen Norm EN 12354-1/SIA 181.

Weitere Informationen finden Sie unter folgendem OR-Code

Mindestanforderungen nach Norm SIA 181

Mindestanforderungen nach SIA 181:2020 3 an den Schutz gegen Luftschall von Innen (Anforderungswerte D, in dB):

GRAD DER STÖRUNG DURCH INNENLÄRM (ZWISCHEN BENACHBARTEN RÄUMEN)

Lärmempfindlichkeit	klein: Geräuscharme Nutzung	mässig: Normale Nut- zung	stark: Lärmige Nut- zung	sehr stark: Lärmintensive Nutzung
	[dB]	[dB]	[dB]	[dB]
gering	42	47	52	57
mittel	47	52	57	62
hoch	52	57	62	67

SCHALLSCHUTZ

Wirtschaftliche Aspekte

Auf Grund der hohen Flächengewichte weisen Kalksandsteinwände gegenüber den meisten anderen üblichen Mauerwerken einen um 3-4 dB höheren Schalldämmwert auf. Wände aus Kalksandstein sind äusserst wirtschaftlich

und preisgünstig, da keine teuren Spezialsteine verwendet werden müssen und die Verarbeitung ohne Mehraufwand erfolgt.

LUFTSCHALL-ISOLATIONSINDEX I, (dB)

	Mindest- anforderungen [dB]	erhöhte Anforderungen [dB]
Wohnungstrennwände, an Wohn- und Schlafräume angrenzende Treppenhauswände	50	55
Wohnungstrenndecken in mehrgeschossigen Gebäuden	50	55
Treppenhauswände	45	50
Trennwände und Decken zwischen Wohnungen und Gewerbebetrieben, Restaurants, Werkstätten usw .	60	65

Die Mindestanforderungen sind als absolutes Minimum einzusetzen. Bei einem Grenzwert von 50 dB für Wohnungstrennwände ist laute Sprache teilweise noch verständlich und Radiomusik schwach hörbar.

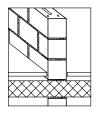
Alle Werte sind nur erreichbar, wenn die Schall-Nebenwege ausgeschaltet sind und die Bauausführung einwandfrei erfolgt. Mit dem KS-Schallschutzrechner kann die Flankendämmung exakt ermittelt werden.

In einem europäischenBericht¹⁾ wird ein Schwellenwert von 50 dB und nicht erst für Pegel > 55 dB empfohlen, weil Belästigungsreaktionen bereits bei diesem Wert

einsetzen. Störungs- und Belästigungsreaktionen können sich über Immobilienpreisverluste und Mietmindereinnahmen finanziell auswirken. Dabei geht man davon aus²⁾, dass insbesondere die Störung von Kommunikation und Schlaf dem Eigentümer und Käufer respektive Mieter bewusst ist. Bei Mietwohnungen häufen sich, gemäss Deutschem Bundesgericht, Mieterwechsel und Leerstände erst im Laufe mehrerer Jahre. Der Verkehrswert von Einfamilienhäusern und Stockwerkeigentum hingegen reagiert relativ rasch auf äussere Einflüsse wie Lärmbelästigung.

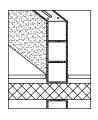
 Kommunikationsstörungen setzen ab 45 dB ein

¹⁾ The State-of-The-Art on Economic Valuation of Noise, S. Navrud, Dep. of Economics and Social Sciences Agricultural, University of Norway 2008 2) Lärmwirkungen. Dosis-Wirkungsrelationen von Prof. Dr. K. Giering, Fachhochschule Trier. Im Auftrag des Umweltbundesamtes


SCHALLSCHUTZ

Schallschutzwerte von Kalksandstein-Mauerwerken

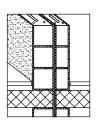
Unter der Voraussetzung einer einwandfreien, fachgerechten Ausführung kann in der Praxis mit folgenden Werten des Schalldämmmasses R'w (dB) gerechnet werden:


SCHALLDÄMMMASS R'W BEI EINSCHALIGER KS-WAND

Einschalige Wand, sichtbar, vollfugig gemauert (≙ ca. 35 kg/m²)

Wandstärke	Flächenmasse	Luftschalldämmung R'w
[cm]	[kg/m²]	[dB]
12,0	210	46
14,5	255/335 1)	48/50 ¹⁾
18,0	325/370 1)	51/53 ¹⁾
20,0	350	52

Einschalige Wand, mit beiseitigem Verputz Verputzt beidseitig je 10 mm (≙ ca. 35 kg/m²)


Wandstärke	Flächenmasse	Luftschalldämmung R'w
[cm]	[kg/m²]	[dB]
12,0	245	48
14,5	290/335 1)	50/52 1)
18,0	360/405 ¹⁾	53/55 ¹⁾
20,0	385	54

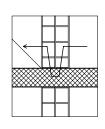
¹⁾ Werte mit schweren Kalksandsteinen

Die Erfahrung zeigt einen Anstieg der Luftschalldämmung R von 6-7.5 dB, je Verdoppelung der Baumasse in kg/m².

SCHALLDÄMMMASS R'W BEI ZWEISCHALIGER KS-WAND OHNE NEBENWEGÜBERTRAGUNG

Zweischalige Wand verputzt Schalldämmplatte 30-40 mm (z.B. Mineralfaser; mind. 50 kg/m³)

Wandstärken (roh)						
12,0 cm	14,5 cm	18,0 cm	20,0 cm			
65 dB	66 dB	68 dB	69 dB			
455 kg/m²	500 kg/m²	570 kg/m²	595 kg/m²			
66 dB	67 dB	69 dB	71 dB			
500 kg/m²	545 kg/m²	615 kg/m²	640 kg/m²			
68 dB	69 dB	70 dB	71 dB			
570 kg/m²	615 kg/m²	685 kg/m²	710 kg/m²			
69 dB	70 dB	71 dB	72 dB			
595 kg/m²	640 kg/m²	710 kg/m²	735 kg/m²			


 $Maximal\ erreichbare\ Schalldammwerte\ R'w\ ohne\ Nebenweg \"ubertragung\ in\ dB:\ darunter\ die\ fl\"achenbezogene\ Masse\ der\ gesamten\ Haustrennwand\ in\ kg/m^2$

SCHALLDÄMMMASS R'W BEI ZWEISCHALIGER KS-WAND MIT NEBENWEGÜBERTRAGUNG

Durchlaufende Deckenkonstruktion ohne elastische Wandlager

Wandstärken (roh)						
12,0 cm	14,5 cm	18,0 cm	20,0 cm			
56 dB	57 dB	59 dB	60 dB			
57 dB	58 dB	60 dB	61 dB			
59 dB	60 dB	62 dB	62 dB			
60 dB	61 dB	62 dB	63 dB			

Maximal erreichbare Schalldammwerte R'w mit Nebenwegübertragung in dB

Der Vergleich der Wandkonstruktionen macht deutlich, wie gross der Einfluss der Nebenweg-Übertragung auf die Luftschalldämmung ist. Bei sonst gleichem Aufbau (flächenbezogene Masse der Trennbauteile) des Mauerwerkes ergibt sich eine bis zu 9 dB höhere Luftschalldämmung! Trenn- und Flankenbauteile sind aufeinander abzustimmen.

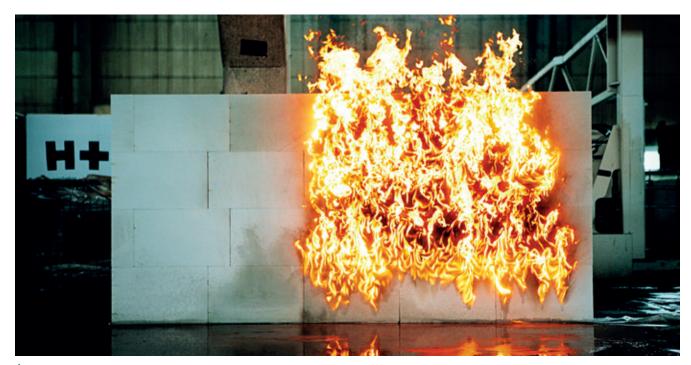
BAUSCHALL-DÄMMMASS NACH STEINSTÄRKE UND BAUSTOFF

Baustoff	Steinstärke (verputzt)					
	120 - 125 mm	145 - 150 mm	175 - 180 mm	200 mm		
Kalksandstein normal	48 dB	50 dB	53 dB	54 dB		
Kalksandstein schwer	-	52 dB	55 dB	_		
Backstein Modul	45 dB	47 dB	48 dB	49 dB		
Backstein schwer	48 dB	50 dB	52 dB	54 dB		
Porenbeton MP	43 dB	_	_	_		
Holz-Leichtbau (Spanplatte/ Mineralwolle)	38 dB	_	_	_		

Angegeben mittels bewertetem Bauschall-Dämmmass R'w in dB (ca.)

Um die Anforderungen gemäss SIA-Norm 181 "Schallschutz im Hochbau" einzuhalten, sind die Schallnebenwege mit zu bedenken. neben der Materialauswahl (hohe Flächengewichte) sind die weiten Übertragungswege mit zu bewerten. Fragen Sie hierzu bitte Ihren zuständigen Ingenieur um Bedeutung und Nachweis an.

BRANDSCHUTZ


Brandschutz von Kalksandstein-Mauerwerken

Kalksandstein gehört in die Klasse A1, nicht brennbarer Baustoff. Das Kalksandstein-Mauerwerk weist eine sehr gute Feuerwiderstandsfähigkeit auf, auch bei geringen Wanddicken. Bereits 15 cm dicke tragende und raumabschliessende Kalksandstein-Wände ohne Verputz erreichen die Feuerwiderstandsklasse REI 90.

MINDESTWANDDICKEN $t_{\scriptscriptstyle F}$ in mm

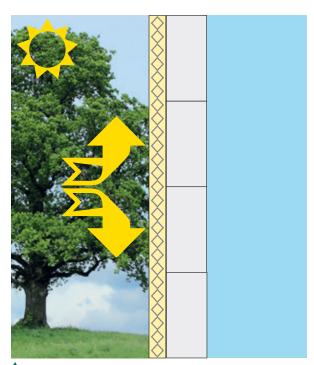
Wände	Mauerwerk	Verputz 1)	¹⁾ Feuerwiderstandsklasse					
			30	60	90	120	180	240
Tragend, nicht raumabschliessend R	MK	ohne	115	125	150	175	225	275
	IVIN	mit	115	115	125	150	200	250
Tragend, raumabschliessend REI	MK	ohne	115	115	125	150	200	250
iragenu, raumauscimessenu kei	IVIT	mit	115	115	115	125	175	225
Nichttragend, raumabschliessend E	MIZ	ohne	75	100	125	150	175	200
	MK	mit	50	75	100	125	150	175

Gemäss SIA 266:2015, Art. 4.6

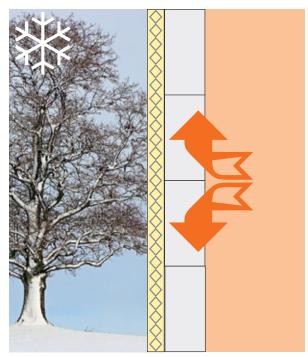
▲ Im Brandfall müssen Bauteile ihre Funktion für eine vorgegebene Dauer (z. B. R90 = 90 Min) beibehalten

 $^{1)\} Voraussetzung\ f\"{u}r\ Werte\ von\ verputzten\ W\"{a}nden:\ Verputz\ beidseitig,\ mind.\ 10\ mm,\ mineralisch$

RAUMKLIMA


Klimaanlage bereits eingebaut

Wandbaustoffe, die schwer sind und wärmespeichernde Eigenschaften aufweisen, wirken sich positiv auf das sommerliche Temperaturverhalten eines Gebäudes aus.


Kalksandstein wirkt selbst bei schlanken Wänden wie eine «Klimaanlage» und entzieht der Raumluft überschüssige Wärme und speichert sie. Er reduziert dadurch die Höchsttemperatur des Innenraumes und sorgt im Hochsommer für eine hohe Wohn- und Arbeitsplatzqualität.

Auch im Winter macht sich die besonders hohe Rohdichte des Kalksandsteins mit maximalem Wärmespeichervermögen positiv bemerkbar. Ob Heizung, Beleuchtung oder die kostenlose Sonneneinstrahlung durch die Fenster: Kalksandstein nimmt jedes "Zuviel" an Wärme auf und gibt es wieder ab, sobald die Raumtemperatur sinkt. Auf diese Weise lassen sich die Heizzeiten wesentlich verkürzen.

Die Wärmedämmung an der Aussenseite der Kalksandstein-Wand sorgt zusätzlich dafür, dass die gespeicherte Wärme nach innen abgegeben wird und sich nicht vorzeitig nach draussen verflüchtigt.

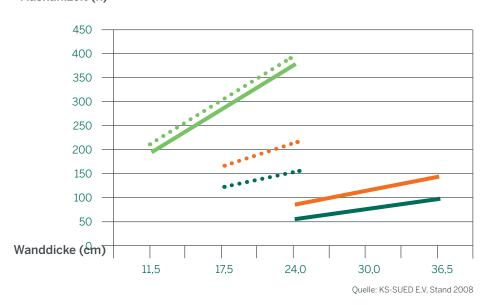
KS-Wände im Sommer: draussen heiss, drinnen kühl

KS-Wände im Winter: draussen kalt, drinnen warm

RAUMKLIMA

Wohlfühlklima

Wände aus Kalksandstein bieten jederzeit ein gesundes Raumklima und einen effektiven Schutz vor Feuchtigkeit. Für diesen positiven Effekt sorgen die natürlichen Kapillare von Kalksandstein. Sie nehmen überschüssige Luftfeuchtigkeit auf und geben sie als Klima-Puffer erst wieder an den Raum ab, wenn dort die Feuchtigkeit der Luft gesunken ist. So wirkt Kalksandstein in zwei Richtungen feuchtigkeitsregulierend.


Baustoffe haben generell einen wichtigen Einfluss auf die Feuchtigkeitsverhältnisse im Raum. Ideal ist eine relative Luftfeuchtigkeit zwischen 40 % und 60 %. Kalksandstein bietet bei einem Luftfeuchtesprung von 50 % auf 80 % eine Wasserdampfspeicherung innerhalb einer Stunde ¹⁾.

Neben der optimalen Luftfeuchtigkeit beeinflusst auch die Oberflächentemperatur das Wohlbefinden. Je höher die Oberflächentemperatur der umgebenden Wände und je geringer ihre Differenz zur individuellen Raumtemperatur, umso behaglicher ist das Raumklima. Ein hochgedämmtes Haus aus Kalksandstein hält die Wärme im Haus und gleicht Schwankungen der Lufttemperatur und der Luftfeuchtigkeit hervorragend aus.

1) Lehrbuch der Bauphysik, Lutz, Jenisch, Fischer, Petzold, Teubner Verlag, 5. Auflage, 2002.

EIN KLIMA, IN DEM SICH ALLE WOHLFÜHLEN.

Auskühlzeit (h)

BAUÖKOLOGIE

Kalksandstein in der Ökobilanz

Der Energieaufwand bei der Herstellung von Kalksandstein ist deutlich geringer als bei anderen Steinarten. Da Kalksandstein aus einer Mischung von Kalk, Sand und Wasser besteht, die ohne chemische Zusatzstoffe gepresst und ausgehärtet wird, ist er ein idealer Baustoff für schadstofffreies Bauen.

Die Härtetemperatur bei der umweltfreundlichen Steinherstellung beträgt 160-200°C. Diese relativ niedrige Temperatur zur Dampfhärtung ergibt einen geringen Energieaufwand bei der Produktion. Es entstehen keine Schadstoffe.

Kalksandsteine leisten deshalb einen wesentlichen Beitrag zur Energieeinsparung und damit auch an das Gleichgewicht der Ökologie.

Minergiestandard

In Kombination mit Wärmedämmung bietet der Kalksandstein eine optimale Voraussetzung zur Erreichung des Minergiestandards. Neben einer Steigerung der Wohn- und Lebensqualität bedeutet die Wahl von Kalksandstein auch ein Entscheid für die Umwelt.

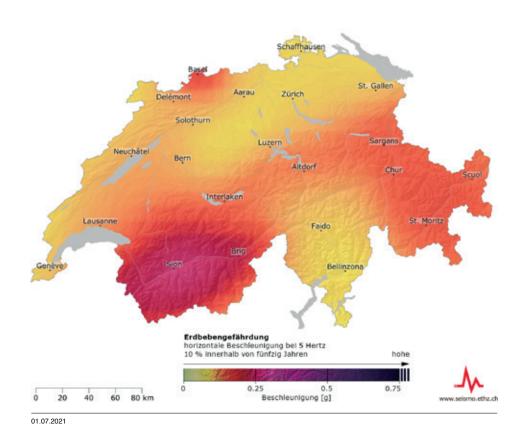
Der Vergleich der Baumaterialien zeigt, dass Mauerwerke aus Kalksandstein in der Ökobilanz gut abschneiden.

Baustoffe (Literatur EMPA)

		KS ¹⁾ Hunziker	Kalksand- stein	Poren- betonstein	Zement- stein	Backstein	Leicht zement- stein, Naturbims	Leicht- Iehmstein	Leicht- zement- stein, Blähton
UBP	Total (kg)	97,7	157,0	348,0	133,0	217,0	222,0	237,0	471,0
	Herstellung (kg)	72,6	132,0	323,0	108,0	191,0	195,0	212,0	445,0
	Entsorgung (kg)	25,1	25,1	25,8	25,1	25,8	26,6	25,8	26,6
Graue	Total (kW/h oil-eq)	0,293	0,398	0,925	0,254	0,791	0,424	0,762	1,51
Energie (nicht	Herstellung (kW/h oil-eq)	0,245	0,350	0,875	0,207	0,740	0,371	0,712	1,46
erneuerbar)	Entsorgung (kW/h oil-eq)	0,048	0,048	0,051	0,047	0,051	0,053	0,051	0,053
	Total (kW/h oil-eq)	0,014	0,037	0,065	0,024	0,078	0,031	0,793	0,052
gesamt (erneuerbar)	Herstellung (kW/h oil-eq)	0,013	0,035	0,064	0,022	0,076	0,029	0,791	0,050
	Entsorgung (kW/h oil-eq)	0,001	0,002	0,002	0,002	0,002	0,002	0,002	0,002
	Total (kg)	0,100	0,138	0,417	0,129	0,258	0,223	0,170	0,417
Treibhaus- gasemission	Herstellung (kg)	0,092	0,129	0,408	0,121	0,249	0,214	0,161	0,407
	Entsorgung (kg)	0,009	0,009	0,009	0,009	0,009	0,010	0,009	0,010

ERDBEBENSICHERHEIT

Auch bei schlanken Wänden


Vorschriften zu erdbebensicherem Bauen und die Normen SIA 261 und 266 verlangen, dass die Sicherheit von Mauerwerk – wie auch von anderen Baukonstruktionen – nachgefragt, berechnet und nachgewiesen werden soll. Die Erdbebeneinwirkungen auf ein Gebäude ist vom Standort des Gebäudes (Bodenklassen gemäss SIA 261) und dem Schwingungsverhalten des Gebäudes abhängig. Mit der richtigen Konstruktion und stabilen Mauerwerkselementen kann das Gebäude erdbebensicher konzipiert werden.

Das Erdbebenwiderstandsverhalten des Baustoffs Kalksandstein und der Grad seiner Schutzwirkung wurde von der Hochschule für Technik und Architektur Freiburg und der EPFL Lausanne bereits im Frühjahr 2007 untersucht. Die Resultate der Wirkungsprüfung von Mauerwerk aus Kalksandstein zeigten, dass erdbebensichere Mauerwerkselemente einen relevanten Beitrag zur Beständigkeit leisten können. Aufgrund seiner hohen Festigkeit, Beständigkeit und Massgenauigkeit ist richtig verbauter Kalksandstein der ideale Baustein für erdbebensichere Bauten.

Die Erdbebensicherheit eines Gebäudes wirklichkeitsnah zu bestimmen, ist komplex und konnte früher nur annäherungsweise berechnet werden. Der umfassende Nachweis der Erdbebensicherheit von Gebäuden, wie er mit verschiedenen Programmen der Anbieter Cubus AG, IngWare und anderen möglich ist, berücksichtigt verschiedene Faktoren. In der Analyse werden Wandschnittkräfte, Spannungsfelder und plastische Verformungen in jeder Wand kontrolliert. Unversehrte Wandelemente wirken sich positiv auf die Stabilitat aus – auch bei schlanken Mauerwerken.

STEIN AUF STEIN
ERDBEBENSICHER BAUEN

Erdbebenbezogen, Baugrundklassen und Bauwerksklassen nach SIA 261

VIELSEITIGKEIT / WERTBESTÄNDIGKEIT

Gestaltungsmöglichkeiten mit verschiedenen Baustoffen

Kalksandstein bietet eine Fülle von gestalterischen Möglichkeiten, speziell auch in Kombination mit anderen Baustoffen wie z.B. mit Holz, Glas, Stahl und Beton erfüllt er selbst hohe ästhetische Ansprüche.

Die Oberfläche kann individuell gewählt werden: ob gestrichen, geschlämmt, verputzt oder als Sichtmauerwerk ist er eine Freude fürs Auge. Der frost- und witterungsbeständige Kalksandstein sorgt dafür, dass das gute Aussehen des Bauwerkes lange erhalten bleibt.

Die Investition in Kalksandstein rechnet sich nicht nur bezüglich Wertbeständigkeit. Da die Wanddicken bei erhöhter Tragfähigkeit des Mauerwerkes geringer ausfallen können, bedeutet bauen mit Kalksandstein-Wänden auch deutlich mehr Nutz- und Wohnfläche mit weniger Baumaterial.

Mit Kalksandstein erhält man ein hohes Mass an Gestaltungsmöglichkeiten.

MASSGENAUIGKEIT

Präzis und sauber

Die Anwender schätzen die Massgenauigkeit des Kalksandsteins. Das Mauerwerk wird sehr präzis und sauber erstellt.

Abmessungen/Toleranzen

MASSTOLERANZEN FÜR KALKSANDSTEINE NACH SN EN 771-2 + A1:2015

Kalksandsteine für Mauerwerk mit	Normal-/Leicht-Mörtelfugen	Dünnbett-Mörtelfugen
	[mm]	[mm]
Nennhöhe	± 2	±1
Nennlänge	±2	±2
Nennbreite	±2	±2

Exaktes und dekoratives Mauerwerk mit Kalksandstein.

TRAGENDE WÄNDE

Bemessungsgrundlagen zu Kalksandsteinmauerwerken

Tragende Innenwände müssen eine Wanddicke von mindestens 12 cm aufweisen. Die Wahl von Stein- und Mörtelqualität richtet sich nach den statischen Anforderungen. Bei Verwendung von verschiedenen Mauerwerkarten (Mischbauweise) oder bei speziellen statischen Gegebenheiten wie z. B. stark unterschiedlichen Wandlasten ist den Verformungsdifferenzen bzw. den daraus sich ergebenden Zwängungsspannungen in den Mauerwerkwänden Rechnung zu tragen.

Bemessungsgrundlagen zu Kalksandsteinmauerwerken liefert die Broschüre "Kalksandsteinmauerwerk – Bemessung nach Norm SIA 266 für Standard-Einsteinmauerwerk", erarbeitet von Dr. Joseph Schwartz. Die Broschüre ist online zu finden unter: www.hunziker-kalksandstein.ch

Im Rahmen der statischen Berechnungen und Lösungen obliegt es dem Ingenieur, die Daten zu validieren.

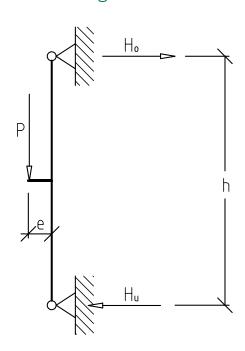
Die Broschüre finden Sie unter folgendem OR-Code

▲ Bei speziellen statischen Gegebenheiten ist den Verformungsdifferenzen Rechnung zu tragen.

NICHTTRAGENDE WÄNDE

Standsicherheit

Nichttragende Innenwände (Ausfachwände, Hintermauerungen) werden in der Regel nach dem eigentlichen Rohbau erstellt. Bei entsprechender Ausbildung übernehmen sie Aufgaben des Brand-, Wärme-, Feuchtigkeits- und Schallschutzes. Das hohe Wärmespeichervermögen gewährleistet ein ausgeglichenes Raumklima.


Die Standsicherheit solcher Wände muss durch geeignete Massnahmen (Versteifungen, Riegel, Anschlüsse usw.) sichergestellt werden. Einflüsse wie Formänderungen angrenzender Bauteile, z. B. nachträgliches Durchbiegen weit gespannter Decken, sind für die Ausbildung der Anschlüsse zu berücksichtigen.

Belastungen der nichttragenden Innenwände durch Konsolen, Lagergestelle usw. sind entsprechend den tatsächlich auftretenden Kräften zu berücksichtigen.

In Industriebauten können zusätzliche aussergewöhnliche Einwirkungen z. B. durch Hubstaplerverkehr auftreten – diese Einwirkungen sind entsprechend zu berücksichtigen (Aufprallkräfte).

Trennwände müssen so ausgebildet sein, dass leichte Konsollasten den Wert 0.4 kN/m nicht übersteigen. Die vertikale Wirkungslinie darf nicht weiter als 0.3 m von der Wandoberfläche verlaufen (z. B. Bilder, Buchregale, kleine Wandschränke).

Abmessungen/Toleranzen

h = Wandhöhe

P = Konsollast (zul. Pmax.= 0.4 kN/m)

e = 0.3 + d/s [m] = Hebelarm der Konsollast bis Wandmitte

H_o = horizontale Haltekraft H_{II} = horizontale Haltekraft unten

Beispiel

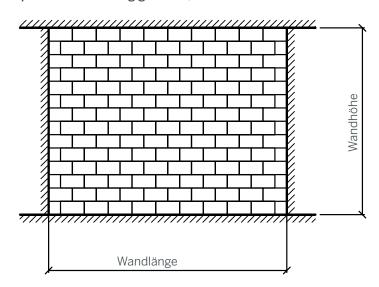
 $h = 2,65 \, \text{m}$

P = 0.4 kN/m

d = 0.3 + 0.12/2 = 0.36 m

 $e = 0.4 \times 0.36 = 0.1440 \text{ kN m/m}$ $H_0 = H_{11} = 0.1440/2.65 = 0.0543 \text{ kN/m}$

Anmerkung zum Beispiel:


Der Anschluss am Wandfuss H_u wird durch Wandreibung sicher aufgenommen.

Der Anschluss am Wandkopf $\rm H_o$ durch Mörtelfugen zwischen Wand und Deckenplatte oder entsprechende Befestigungsmittel erfolgen. Der hier geführte Nachweis an Wandkopf und Wandfuss liegt bei der einachsig geführten Ableitung der Konsollast auf der sicheren Seite. Die seitlichen Anschlüsse sollten konstruktiv mit Flachankern erfolgen, die z. B. in den Drittelpunkten bezogen auf die Wandhöhe oder gleichmässig erstellt im Abstand von 0,5 m angeordnet werden.

NICHTTRAGENDE WÄNDE

Dimensionierung von nichttragenden Wänden

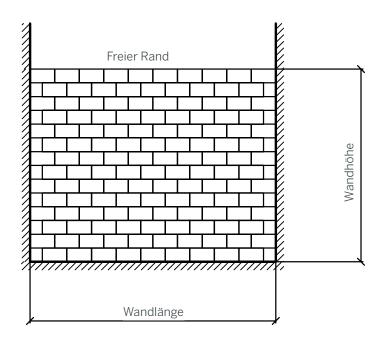
Beispiel: Wand vierseitig gehalten, ohne Auflast

Einbaubereich I:

Gebäude mit geringer Menschenansammlung wie Wohnbauten usw.

Einbaubereich II:

Gebäude mit grosser Menschenansammlung, wie grössere Versammlungsräume, Schulräume usw.


Wandlängen für vierseitig gehaltene Wand ohne Auflast (ZULÄSSIGE WERTE DER ABMESSUNGEN NACH DIN 4103-1)

Wanddicke	Einbau-				Wand	lhöhe			
wanddicke	bereich	2,5 m	3,0 m	3,5 m	4,0 m	4,5 m	5,0 m	5,5 m	6,0 m
[cm]		[m]							
10,0	I	7,0	7,5	8,0	8,5	9,0	_	_	_
10,0	П	5,0	5,5	6,0	6,5	7,0	_	_	_
12,0	I	10,0	10,0	10,0	10,0	10,0	_	_	_
12,0	II	6,0	6,5	7,0	7,5	8,0	_	_	_
14,5	I	10,0	10,0	10,0	10,0	10,0	_	_	_
14,5	II	6,0	6,5	7,0	7,5	8,0	_	_	_
18,0	I	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
18,0	П	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
20,0		12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
20,0	II	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0

Quelle: www.Kalksandstein.de, KS-Planungshandbuch, 7. Auflage, S. 109 / Tafel 7

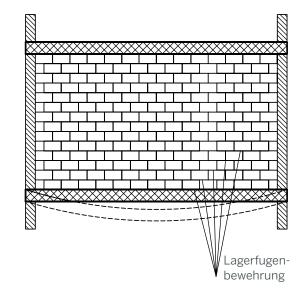
NICHTTRAGENDE WÄNDE

Beispiel: Wand dreiseitig gehalten, ohne Auflast, oberer Rand frei

Wandlängen für dreiseitig gehaltene Wand ohne Auflast, oberer Rand frei (ZULÄSSIGE WERTE DER ABMESSUNGEN NACH DIN 4103-1)

Wanddiala	Einbau-				Wand	dhöhe			
Wanddicke	bereich	2,0 m	2,25 m	2,5 m	3,0 m	3,5m	4,0 m	4,5 m	5,0 - 6,0 m
[cm]		[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
10,0	I	8,0	9,0	10,0	10,0	12,0	12,0	12,0	_
10,0	П	5,0	5,0	6,0	7,0	8,0	9,0	10,0	_
12,0	I	8,0	9,0	10,0	10,0	12,0	12,0	12,0	-
12,0	II	6,0	6,0	7,0	8,0	9,0	10,0	10,0	-
14,5	I	8,0	9,0	10,0	10,0	12,0	12,0	12,0	-
14,5	II	6,0	6,0	7,0	8,0	9,0	10,0	10,0	_
18,0	I	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
18,0	II	8,0	9,0	10,0	12,0	12,0	12,0	12,0	12,0
20,0	I	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0
20,0	II	8,0	9,0	10,0	12,0	12,0	12,0	12,0	12,0

Quelle: www.kalksandstein.de, KS-Planungshandbuch, 7. Auflage, S. 110 / Tafel 8 mit weiteren Inormationen.

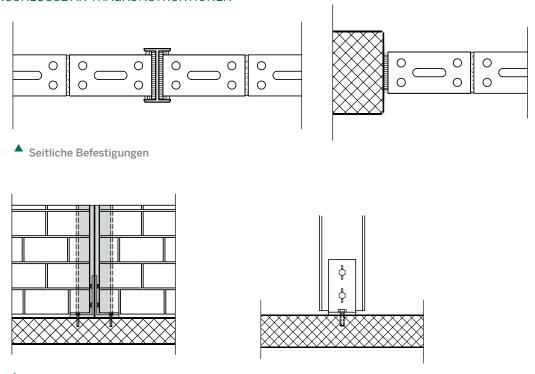

NICHTTRAGENDE WÄNDE


Durchbiegung von Decken

Nichttragende Wände auf Decken gestellt sind infolge der auftretenden Deckendurchbiegungen rissegefährdet. Durch das Einlegen von Lagerfugenbewehrungen kann die Rissegefahr reduziert werden.

Folgende Massnahmen sind zu empfehlen:

- Einlegen einer besandete Bitumenpappe oder einer geeignete Trennlage zwischen Decke und Mauerwerk
- Vermauern mit Zementmörtel
- Im unteren Bereich Einlegen von Lagerfugenbewehrungen (wirkt als Zugband), damit die Wände als Scheibe selbsttragend wirken


▲ KS-Wände sind auch gestalterisch interessant.

NICHTTRAGENDE WÄNDE

Ausfachwände

Als nichttragende Ausfachwände werden zwei-, drei- und vierseitig gehaltene Wände bezeichnet, die nach dem eigentlichen Rohbau hochgeführt und an das Tragsystem befestigt werden.

ANSCHLÜSSE AN TRAGKONSTRUKTIONEN

Anschlüsse an angrenzende, tragende Bauteile: In den oben stehenden Abbildungen sind Möglichkeiten zur Verankerung von Ausfachungen an verschiedenen Tragsystemen dargestellt.

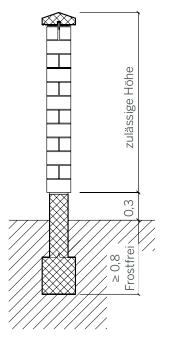
Detail Wandfuss

Die seitliche Befestigung bei Stahlbauten oder in vertikalen Nuten in Stahlbetonstützen ist einfach und lässt sich solide ausführen. Will man bei Stahlbetonstützen zur Vereinfachung der Schalung auf Nuten verzichten, kann an die Stahlbetonstütze ein U-Profil nachträglich angebracht werden. Eine Variante bietet eine in die Stahlbetonstütze eingelassene (in Schalungen gelegt) oder eingedübelte Ankerschiene eines Anschlussankers. Der Verankerungsbügel kann damit einfach in die Lagerfuge eingemörtelt werden. Die Anzahl Anker pro Laufmeter Wandhöhe richtet sich nach den Wandabmessungen und Belastungen. Diese Anschlusslösung bietet sich auch dann an, wenn die nichttragenden Innenwände seitlich an Mauerwerk- oder Betonwände angeschlossen werden sollen.

Wenn Innenwände bzw. Ausfachungen nicht bis unter die Decke gemauert werden können, ist der obere Anschluss sinngemäss wie die seitliche Verankerung gleitend und elastisch auszuführen.

Sehr lange Innenwände oder freistehende Wandenden müssen zusätzlich ausgesteift werden. Es ist dabei darauf zu achten, dass die oberen Anschlusspunkte der Aussteifungen nicht wegen Durchbiegung der Decken belastet werden. Bei Aussteifungen mit Stahlstützen ([-oder I-Profil) werden die Stützen bis Oberkante Wand geführt und mit Hilfe von Laschen mit Schlitzlöchern an der tragenden Konstruktion oben und unten befestigt. Die Schlitzlöcher lassen vertikale Bewegungen zu, verhindern jedoch ein horizontales Verschieben.

NICHTTRAGENDE WÄNDE


Freistehende Wände

Unter freistehenden Wänden versteht man solche Wände, die weder seitlich durch Querwände oder Stützen noch oben durch anschliessende Decken oder Randbalken gehalten sind. Dies trifft z. B. für Stützmauern, Einfriedungen und Brüstungen zu.

Bei der Windlastannahme ist die Höhenlage der Bauteile über Gelände zu beachten. Die Einzelwandlängen sollten 6 bis 8 m nicht überschreiten.

Sollen freistehende Mauerwerkwände höher gemauert werden als nach der nachstehenden Tabelle, dann sind diese Wände durch eine vertikale Armierung (K VER) auszubilden.

Freistehende Wände müssen an der Mauerkrone gegen Regenwasser abgedeckt werden. Hierfür eignen sich Natursteinplatten, Mauerabdeckungen aus vorgefertigten Blechprofilen sowie Betonfertigteile jeweils mit ausreichendem Überstand und mit Wassernase.

Freistehende Wände

BERECHNUNG UND BEMESSUNG

Für die Berechnung sind die entsprechenden Werte der Windbelastung den SIA-Normen zu entnehmen. In einfachen Fällen kann zur Vordimensionierung auch die nachfolgende Tabelle benützt werden.

Wanddicke d	Zulässige Höhe H ab OK Terrein/Mauersockel
[mm]	[m]
120	0,801)
145	1,10 1)
180	1,40
250	1,90

1) mit K VER sind höhere Werte möglich

OBERFLÄCHENBESCHICHTUNG

Innenraumgestaltung

Kalksandsteine sind hell und freundlich. Deren Formenvielfalt wird allen ästhetischen Ansprüchen gerecht. Zur Verwendung bei Sichtflächen eignen sich sowohl klein- wie auch grossformatige Steine. Kalksandsteine haben eine planebene, saubere Oberfläche und sind von der mineralogischen Basis her als Baustoff ein idealer Untergrund für jede Art der Beschichtung. Gegenüber der Anwendung im Freien sind im Innenbereich die Anforderungen, welche an das Beschichtungsmaterial und die Applikation gestellt werden, einfacher und problemloser. Beschichtungen auf den planebenen Kalksandstein-Wandflächen sind wirtschaftlich und über-aus kostengünstig. Empfehlenswert ist das Anbringen eines Musters.

Beschichtungsstoffe im Innenbereich erfüllen vorab ästhetische Funktionen und lassen dem Architekten grossen Freiraum in der Innenraumgestaltung. Das passende Zusammenspiel von Licht, Farbe und Oberflächentextur wie auch grundsätzliche Anforderungen an ein komfortables Wohnambiente sind dabei zu beachten.

Grundsätzlich bieten sich bei Kalksandstein-Innenwänden – nebst der Variante des natürlichen Sichtmauerwerks – drei attraktive Möglichkeiten der Beschichtung an:

FARBANSTRICH

Anstrichstoffe (z.B. Dispersions- oder Mineralfarben) mit Farbton weiss, abgetönt oder bunt sollen wischbeständig und gut deckend, aber doch "atmungsfähig" sein.

Wandfarben können gestrichen, gerollt oder gespritzt werden. Der Untergrund muss sauber und trocken sein. Ausserdem soll das Mauerwerk mit unbeschädigten Steinen, ohne Mörtelwülste, vollfugig gemauert werden. Die Fugen können bei Innenwänden bündig abgezogen werden.

GESCHLÄMMTES MAUERWERK

Die vollfugig gemauerten Wände werden mit Feinmörtel dünn abgeschlämmt. Die Struktur der Steine und Fugen muss sichtbar bleiben. Der Feinmörtel für die Schlämme kann auf der Baustelle aus Kalk und Sand gemischt werden. Gebräuchlicher sind heute vorwiegend fertig gemischte Produkte, welche sich sehr einfach verarbeiten lassen.

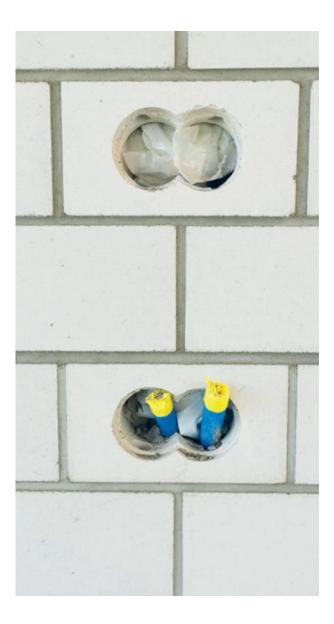
Eine geschlämmte Wandoberfläche wirkt äusserst dekorativ und erzeugt bei Innenräumen wohnliche Effekte, welche man heute besonders zu schätzen weiss.

VERPUTZE KALKSANDSTEIN-INNENWÄNDE

Kalksandstein ist auch ein idealer Untergrund für Verputz. Bei Innenwänden müssen grundsätzlich keine Haftbrücken appliziert werden. Auch kostengünstige Einschichtputze haften problemlos. Die wichtigsten Funktionen des Innenwandputzes sind die Herstellung ebener und fluchtgerechter Flächen sowie die Bildung eines Speichers zur vor übergehenden Aufnahme von überhöhter Raumfeuchte. Darüber hinaus verbessert der Putz den Schallund Brandschutz zusätzlich.

Sichtmauerwerk

Farbanstrich


Geschlämmtes Mauerwerk

Verputztes Mauerwerk

LEITUNGSFÜHRUNG

Leitungskanäle können mit den angebotenen Elektro- und Installationssteinen vorteilhaft ausgeführt werden. Für Schalter und Steckdosen sind Spezialsteine erhältlich. Die Leitungsführung ist, wenn immer möglich, im Detail in die Planung einzubeziehen. Nachträgliches Schlitzen und unnötige Schallnebenwege können damit verhindert werden. So können zum Beispiel Elektroleitungen zwischen zweischalige Wände, unter Wandisolationen, hinter Wandschränke und Vormauerungen sowie in Unterlagsböden und Betondecken verlegt werden. Die Verwendung von Zargentüren vereinfacht das Problem der Leitungsführung zu den Lichtschaltern.

AUSSENWANDSYSTEME

Kalksandstein-Aussenwände im Überklick

Konstruktion	Wandaufbau	Wärmed	ämmung	Schalld	lämmung	
System	von aussen nach innen	Dämmstärke	U-Wert ¹⁾ (Wärme- durchgang)	Flächenmasse (inkl. Verputz)		immwert 'w
		[mm]	[W/m² K]	[kg/m²]	[dB]	[Seite]
A. Sichtmauerwerk	KS-Sichtmauerwerk 120 mm Luftschicht 30 mm, Wärmedämmung variabel, KS-Mauerwerk 120 mm	80 100 120 140	0,35 0,29 0,25 0,22	420	≥ 65	29
B. Zweischalenmauerwerk verputzt	Aussenputz, KS-Mauerwerk 120 mm, Toleranzraum 10 mm, Wärmedämmung variabel, KS-Mauerwerk 145 mm	80 100 120 140	0,35 0,29 0,25 0,22	500	≥66	39
C. Mauerwerk mit Aussenisolation	Aussenputz, Wärmedämmung variabel, KS-Mauerwerk 180 mm, Innenputz 10 mm	80 100 120 140	0,36 0,30 0,26 0,23	360	≥ 53 ²⁾	40
D. Hinterlüftete Vorhangfassade	Fassadenverkleidung, Luftschicht ≥ 40 mm, Wärmedämmung variabel, KS-Mauerwerk 150 mm, Innenputz 10 mm	80 100 120 140	0,36 0,30 0,26 0,23	290	≥ 50 ²⁾	41

¹⁾ Früher k-Wert

Wärmeleitfähigkeit λ_R :

- Wärmedämmung
- Luftschicht (Wandkonstruktion A)
- Luftschicht (Wandkonstruktion **D**)
- Innenputz 10 mm

 $\begin{array}{l} \lambda_{_R} = 0,\!035\,\text{W/m K} \\ \lambda_{_R} = 0,\!176\,\text{W/m K} \\ \lambda_{_R} = 0,\!50\,\,\text{W/m K} \\ \lambda_{_R} = 0,\!70\,\,\text{W/m K} \end{array}$

²⁾ Bei Verwendung von speziellen Dämmplatten können diese Werte bis zu 8 dB verbessert werden.

AUSSENWANDSYSTEME

Sichtmauerwerk

Beim Fassadenbau mit Kalksandsteinen kommen die wirtschaftlichen und ästhetischen Vorteile von Sichtmauerwerk sowohl im Wohnungsbau als auch im öffentlichen und gewerblich-industriellen Bau ideal zum Tragen.

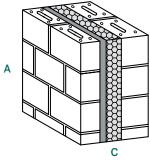
Kalksandstein-Sichtmauerwerk

- Sichtmauerwerk aus Kalksandstein kann effizient und preisgünstig erstellt werden.
- Der Kalksandstein ermöglicht die Gestaltung von Bauten in jeder Umgebung.
- Der Kalksandstein ermöglicht unterhaltsarme Fassaden mit höchster Alterungsbeständigkeit.
- Der Kalksandstein gewährleistet frostbeständiges Mauerwerk.

Sichtflächen sind im wahrsten Sinne des Wortes Ansichtssache. Deshalb sind die Anforderungen an das Erscheinungsbild vom Planer eindeutig zu definieren. Gemäss Anforderungen ist Sichtmauerwerk, sofern ein regelmässiges Bild erzielt werden soll, mit massgenauen, unbeschädigten und sauberen Steinen zu erstellen. Die Dicke der Lagerfugen und die der Stossfugen haben etwa 10 mm zu betragen. Teilsteine sind zu fräsen. Die Art der Fugenausbildung richtet sich nach dem gewünschten Bild des Sichtmauerwerks, respektive nach seiner Wetterexponiertheit.

Schwieriger zu definieren ist hingegen der Begriff «unbeschädigte Steine». Die Norm setzt nicht voraus, dass jeder Stein im Sichtmauerwerk makellos, d. h. ohne jede geringste Beschädigung an Kanten und Ecken zu sein braucht. Aufgrund der heutigen fabrikationstechnischen Möglichkeiten kann man Kalksandsteine als unbeschädigt bezeichnen, wenn sie keine grösseren Kanten- und / oder Eckschäden, keine gut sichtbaren Risse und keine grobporösen Stellen auf der Sichtfläche aufweisen.

KONSTRUKTION AM BEISPIEL ZWEISCHALEN-SICHTMAUERWERK


A Aussenschale:

- Wetterschutz
- Gestaltungselement
- Sommerlicher Wärmeschutz

B Innenschale:

- Wärmespeicher
- Schallschutz
- Tragfunktion

Luftschall: R'w ≥ 65 dB

B/D

C Zwischenschicht Wärmedämmung 80 – 140 mm:

- Mineralfaserplatten
- Hartschaumplatten

U-Wert: 0,35 – 0,22 W/m² K Luftschicht: 20 – 50 mm

D Innenraumgestaltung:

- Sichtmauerwerk
- verputzt
- geschlämmt
- gestrichen

AUSSENWANDSYSTEME

Handwerkgerechtes Sichtmauerwerk

Handwerkgerechtes Sichtmauerwerk kann nicht exakt wie ein Präzisionselement ausgeführt werden. Es ist deshalb unerlässlich, die an das Sichtmauerwerk gestellten Anforderungen genauer zu definieren:

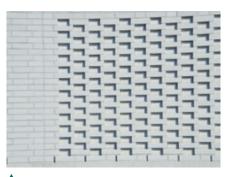
- durch einen umfassenden Ausschreibungstext
- durch das Erstellen einer Musterwand vor Baubeginn, um den Ausführungsstandard (Fugenbild, Fugenart, Kalksandsteinqualität usw.) genau festzulegen.

Besondere Leistungen, wie z.B. das Aussortieren von Steinen, das Schützen von Sichtflächen usw., sind in der Ausschreibung speziell zu erwähnen und dem Unternehmer zu vergüten.

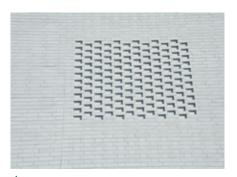
Das Gesicht eines Baues wird durch das ganze handwerkliche Gefüge eines Mauerwerks geprägt und nicht durch die Beschaffenheit der einzelnen Steine. Ausserdem haben Unregelmässigkeiten an Kanten und Sichtflächen der Steine keinen Einfluss auf die Qualität und Beständigkeit eines Sichtmauerwerks.

SICHTMAUERWERK

Sichtmauerwerk ist kein maschinell hergestelltes Produkt. Sein Reiz liegt gerade in der handwerkgerechten Verarbeitung. Nicht der einzelne Stein entscheidet, sondern die ästhetische Gesamtwirkung der Fläche.


Wichtig für die Beurteilung eines Sichtmauerwerks ist daher die Betrachtungsdistanz. Während das Sichtmauerwerk aus einer Distanz von ca. 10 m hohen optischen Qualitätsansprüchen gerecht wird, können bei der Betrachtungsdistanz von ca. 1 m an einzelnen Stellen Kanten- und Eckbeschädigungen festgestellt werden. Für ein hochwertiges Sichtmauerwerk ist jedoch nebst der Verwendung von sauberen Steinen, die Sorgfalt auf der Baustelle von entscheidender Bedeutung.

LUFTSCHICHT


Beim zweischaligen Kalksandsteinmauerwerk hat die Luftschicht folgende Funktion: Sie ist vor allem eine Sicherung gegen allfällig eingedrungenes Schlagregenwasser. Sie soll ihm ohne Benetzen der Isolation sicheren Abfluss gewähren.

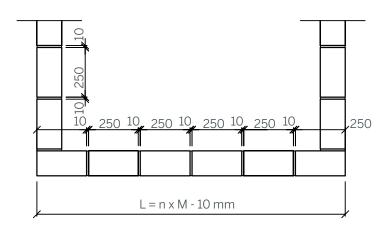
Betrachtungsabstand 1 m

Betrachtungsabstand 5 m

Betrachtungsabstand 10 m

AUSSENWANDSYSTEME

Um ein Sichtmauerwerk (innen + aussen) zu erstellen, ist der konstruktiven Ausbildung des Gebäudes vom Keller bis zum Dach grosse Sorgfalt zu tragen.


Folgende Details sind zu beachten:

- Raster (Schichten- und Ankerplan)
- Gebäudetrennung
- Dehnungsfugen
- Mauerfuss
- Luftschicht
- Dachanschlüsse
- Leibungen

Mauerwerk-Qualität (Bezeichnung)	Steinqualität	Anspruch an Finish
Sichtmauerwerk	Steine aus Normalproduktion	Regelmässiges Fugenbild, Stoss- und Lagerfugen ca. 10 mm, SichtmauerwerkPlanung. Steine: Vereinzelte Eck- und Kantenbeschädigungen möglich. Halbsteine. Teilsteine gefräst. Fugen müssen bei bewittertem Mauerwerk verdichtet werden.

RASTER BEI SICHTMAUERWERK (mm)

n = Anzahl SteineM = Steinlänge + Stossfuge = 260 mm

AUSSENWANDSYSTEME

Dehnungsfugen

Damit in den Bauteilen keine unzulässigen Spannungen auftreten, sind Dehnungsfugen vielfach unerlässlich. Grundprinzip: Bewegungsfugen sind dort anzuordnen, wo das Mauerwerk reissen würde, wenn keine Fugen vorhanden wären.

Zu beachten sind:

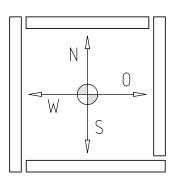
- Wärmedehnung infolge Temperaturdifferenzen
- Mauerwerköffnungen
- Rück- und vorspringende Bauteile (z. B. Balkone, Sparren, Pfetten)
- dünnwandige, unterschiedlich besonnte Mauerteile
- unterschiedliche Materialien und Konstruktionen.
 Skelettbau: Beton-Kalksandstein, Stahl-Kalksandstein
- Decken und Flachdächer

Formänderungen an Mauerwerken treten auf infolge:

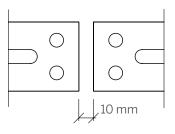
Temperaturänderungen
 Wärmedehnung von Kalksandstein-Mauerwerk
 ∆t = 0.008 mm / mK
 (man kann auch den Mittelwert nach Norm
 SIA 266 :2003, Art. 3.1.4.2, Tabelle 3 verwenden)

Beispiel:

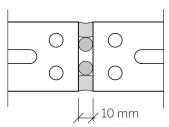
Temperaturdifferenz $\Delta t = \pm 30 \text{ °K}$ Wandlänge 10 m'


Längenänderung $\Delta I = 0,008 \times 30 \times 10 = \pm 2,4 \text{ mm}$

- Kriechen unter Dauerlast (siehe Norm SIA 266:2003, Art. 3.1.4.2, Tabelle 3)
- Schwinden (siehe Norm SIA 266:2003, Art. 3.1.4.2, Tabelle 3)

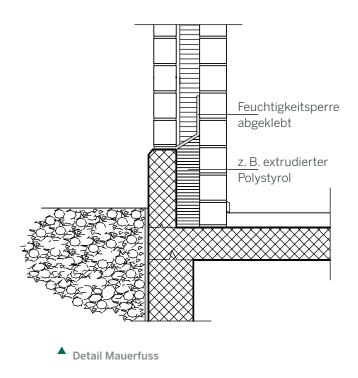

Vertikale Bewegungsfugen in der Aussenschale sind vor allem an den Gebäudeecken wichtig. Durch unterschiedlich besonnte Fassaden und Fassadenteile entstehen verschieden grosse Temperaturdeformationen. Dies erfordert die Ausbildung einer durchgehenden vertikalen Dehnungsfuge in der Aussenschale.

Die einzelnen Gebäudeteile sollen folgendermassen "arbeiten" können:


- Ostwand vor Nordwand
- Südwand vor Ostwand
- Westwand vor Süd- und Nordwand
- Fugen an allen Gebäudeecken
- Belastete Wandpartien sind durch Fugen von unbelasteten Partien zu trennen.
- Fugen bei Wandabschnitten von mehr als 10 12 m

Anordnung von Dehnungsfugen an Gebäudeecken

Offene Dehnung



Geschlossene Dehnung

AUSSENWANDSYSTEME

Mauerfuss

Die Übergangszone zwischen Kellerdecke / Kellerwand und dem aufgehenden Mauerwerk über Terrain stellt eine besondere Herausforderung dar. Bei der konstruktiven Gestaltung des Mauerwerkfusses sind sowohl statischen als auch wärme- und feuchtetechnischen Anforderungen Rechnung zu tragen. Für die Ausbildung dieser Bauteilknotenpunkte sind für die verschiedenen Aussenwandsysteme aus Kalksandstein-Mauerwerk eine Vielzahl von Ausführungsmöglichkeiten bekannt. Diese müssen aber nicht nur die technischen und bauphysikalischen Anforderungen erfüllen, sondern sollten nach Möglichkeit auch wirtschaftlich erstellt werden können.

→ KS-Mauerwerk mit Dehnfugen

AUSSENWANDSYSTEME

Luftschicht

Beim zweischaligen Kalksandstein-Sichtmauerwerk hat die **Luftschicht** folgende Funktion: Sie bedeutet primär eine Sicherung gegen allfällig eindringendes **Schlagregenwasser**. Damit wird ein Benetzen der Wärmedämmung verhindert und ein sicheres Abfliessen der Feuchtigkeit gewährleistet.

Durch die **Entwässerungsöffnungen** am Wandfuss und den luftundichten An- und Abschlüssen der Schale im Kronenbereich, bei Fenstern usw., ergibt sich ausserdem eine Kommunikation zwischen Aussenluft und Luftschicht. Von innen herkommende Feuchtigkeit kann in den Luftraum verdunsten.

Bei verputzter Aussenschale wird auf diese Luftschicht verzichtet, weil ein guter Verputz die Schlagregendichtigkeit gewährleisten kann. Es muss hier lediglich ein Toleranzraum eingeplant werden.

Üblich ausgeführtes Zweischalenmauerwerk mit den in der Tabelle aufgeführten Luftschichten kann **nicht als hinterlüftetes Fassadensystem** bezeichnet werden, da im Hohlraum keine eigentliche Luftzirkulation stattfindet. Die Luftschicht kann bei der wärmetechnischen Bemessung nach SIA-Norm 279:2011 (Wärmeschutz im Hochbau) mitgerechnet werden.

Dicke der Luftschicht	Wärmedurchlasswiderstand I/∧ (RL)	
[cm]	[m² K/W]	
1 – 2	0,14	
über 2	0,17	

Schlagregenbeanspruchung	Abmessung Luftschicht	
	Verputztes Mauerwerk (Toleranzraum)	Sicht-Mauerwerk nicht hinterlüftet (Sicherheitsraum)
	[cm]	[cm]
gering	1	2
mittel	1 – 2	3
hoch	2	4

AUSSENWANDSYSTEME

Leibungen

Leibungen sind je nach Ausrichtung stark schlagregenbeansprucht. Beim Sichtmauerwerk ist zu beachten, dass keine Feuchtigkeit in die Leibungsisolation eindringen kann (fehlende Luftschicht).

Imprägnierungen

Grundsätzlich ist vom Imprägnieren von Kalksandstein-Sichtmauerwerk abzuraten. Eine mangelhafte Fugenausbildung kann damit nicht verbessert werden.

Mauerwerk-Bewehrung

VERANKERUNGEN

Die äussere Schale muss zur Gewährleistung der Standsicherheit mit der Tragkonstruktion des Gebäudes – zum Beispiel der Innenschale – verbunden werden, denn sie unterliegt oft recht grossen Beanspruchungen. Die Verankerung muss so erfolgen, dass die Wandscheibe sich frei bewegen kann, um das Entstehen von Zwängsspannungen infolge Längenänderungen aus Temperaturschwankungen zu verhindern. In der Regel werden die Anker in horizontalen Reihen in der ersten und zweiten Lagerfuge unterhalb der Decke oder in der Deckenstirn angeordnet. Entsprechend der Belastbarkeit des gewählten Ankertyps ist ein Ankerabstand von ca. 50 bis 75 cm erforderlich.

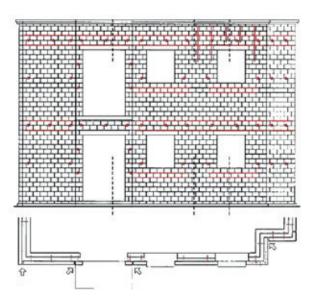
ANKERTYPEN

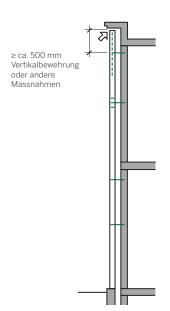
Es sind verschiedene in der Praxis bewährte Anker gebräuchlich. Bei der Anwendung sind die ein schlägigen Empfehlungen der verschiedenen Fabrikate sowie die Norm SIA 266 zu beachten. Grundsätzlich gilt, dass auch die Verankerung der äusseren Schale durch den zuständigen Ingenieur festzulegen und im Fassadenplan anzugeben ist. Die Dimensionierung der Ankerabstände wird durch die Beanspruchung und die Tragfähigkeit des gewählten Ankertyps bestimmt.

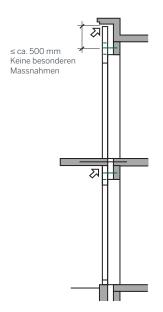
Lagerfugen-bewehrung — Ankerlage Lagerfugen-bewehrung

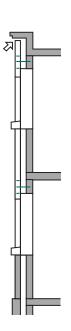
LAGERFUGENBEWEHRUNG

Bewehrungseinlagen zur Vergrösserung der Tragfähigkeit und / oder zur Aufnahme von Zwängsspannungen können sowohl für die Innenschale als Teil der Tragkonstruktion als auch für die Aussenschale zweckmässig sein. Insbesondere bei den Aussenschalen, welche durch Temperatur und andere Beanspruchungen belastet sind, kann die Rissesicherheit in vielen Fällen durch die zweckmässige Einlage einer Lagerfugenbewehrung sichergestellt werden. Im Bereich der Fensterbrüstungen treten infolge der Querschnittverminderung Spannungskonzentrationen auf, die das Risserisiko entsprechend erhöhen. Fensterbrüstungen sind deshalb bei deutlicher Querschnittsverminderung mit einer Lagerfugenbewehrung konstruktiv zu verstärken.


Bei dieser Abbildung handelt es sich um eine beispielhafte Darstellung eines Gelenk-Luftschichttankers.


AUSSENWANDSYSTEME

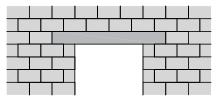

Vertikale Bewehrung


Nach oben auskragende Mauerteile können nur auf eine beschränkte Höhe ohne Bewehrung ausgeführt werden. Die Grenze liegt etwa bei einer Auskragung von ca. 50 cm. Höher auskragende Mauern müssen mit vertikalen Bewehrungseinlagen nach Angaben des Ingenieurs versehen werden.

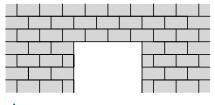
Die technischen Werte über die Produkte für Verankerung, Bewehrung und Fugen sind den Unterlagen der Herstellerfirmen zu entnehmen. Die Bemessungen und die Anordnungen der jeweiligen Anker haben ausschliesslich durch den Ingenieur zu erfolgen.

Schematisches Beispiel:

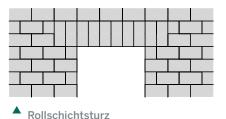
- Verankerung
- zwei Ankerreihen pro Geschoss
- Anker seitlich oder über Fensterstürzen
- Anker bei schlanken Pfeilern
- Bewehrung
- Lagerfugen:
 - Gurtstreifen bei Ankerreihe
 - Brüstung
 - Ecken (Eckbügel)
- Vertikalbewehrung:
 - Dachrand


- Bewegungsfugen
- alle 10-12 m
- Gebäude-Ecken
- Balkonplatte, auskragend

AUSSENWANDSYSTEME


Stürze

Stürze sind aus bewehrtem Beton und Kalksandsteinen als Verblendung hergestellt. Sie tragen die Lasten selber ab. Die Stürze werden in verschiedenen Abmessungen und Querschnitten nach Angaben des Bestellers fabriziert. Läufer- und Rollschichtstürze sind auch dreiseitig verblendbar.


Das Ausfugen erfolgt bauseits mit dem entsprechen den Sichtmauerwerk-Mörtel.

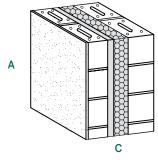
Fensterbank

Fensterbänke sind in verschiedenen Materialien (Beton, Naturstein, Kunststein, Metall usw.) im Handel erhältlich.

■ Wassernase und seitliche Auffalzung sind wichtig, damit Schmutzwasser nicht die Fassade streifenartig verunziert.

Das seitliche Einbinden der Fensterbänke in das Mauerwerk erfordert keine Kittfugen. Der Leibungsstein ist in verschiedenen Ausführungen nach Angaben des Planers mit der Fensterbank verklebt.

AUSSENWANDSYSTEME


Zweischalenmauerwerk verputzt

KONSTRUKTION AM BEISPIEL VERPUTZTES ZWEISCHALENMAUERWERK

- A Aussenschale:
- Wetterschutz
- Gestaltungselement
- Sommerlicher Wärmeschutz

- B Innenschale:
- Wärmespeicher
- Schallschutz
- Tragfunktion

Luftschall: R'w ≥ 66 dB

C Zwischenschicht Wärmedämmung 80 - 140 mm:

- Mineralfaserplatten
- Hartschaumplatten

U-Wert: 0.35 - 0.22 W/m² K

Tolleranzraum 10 mm

- D Innenraumgestaltung:
- Sichtmauerwerk
- verputzt

B/D

- geschlämmt
- gestrichen

Aufbau

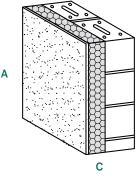
INNENSCHALE

Die innere Schale übernimmt in erster Linie die Tragfunktion. In der Regel genügt ein Einsteinmauerwerk von 120 mm. Um günstige Werte bezüglich Wärmeträgheit und **Schallisolation** zu erhalten, empfiehlt es sich iedoch eine Dicke von 150 mm zu wählen.

WÄRMEDÄMMSCHICHT

Diese Zweischicht, welche primär die Wärmedämmung zu übernehmen hat, sollte reichlich dimensioniert werden. Die Mehrkosten von dickeren Platten sind im Vergleich zu besseren Wärmeisolationen gering und werden durch die Heizkosteneinsparungen in kurzer Zeit wieder amortisiert. Entsprechend den gestiegenen Anforderungen an die Wärmedämmung wählt man heute üblicherweise Isolationsstärken von 80 bis 140 mm. Damit erreicht man äusserst wirtschaftliche Konstruktionen. Um die erwünschte Schutzwirkung auch effektiv und auf die Dauer zu gewährleisten, muss das Dämm-Material einer ganzen Reihe von Anforderungen genügen. Es soll wärmedämmend, nicht brennbar und alterungsbeständig sein. Beim Kalksandstein-Zweischalenmauerwerk kann im Normalfall auf eine Dampfbremse (warmseitig) verzichtet werden.

AUSSENWANDSYSTEME


Mauerwerk mit Aussenisolation

KONSTRUKTION AM BEISPIEL AUSSENISOLIERTES MAUERWERK

A Verputz:

- mit Bewehrungsgittergewebe
- Wetterschutz
- Gestaltung und Farbgebung heller Farbtöne

Dampfdurchlässiger Putzaufbau

- **B** Kalksandsteinmauerwerk:
- Tragfunktion
- Schallschutz
- Wärmespeicher

Luftschall: R'w ≥ 53 dB

C Wärmedämmung 80 - 140 mm:

- Hartschaumplatten oder
- Mineralfaserplatten

U-Wert: 0,36 - 0,23 W/m² K

Vorteilhafter, ebener Untergrund: KS-Mauerwerk

- D Innenraumgestaltung:
- Sichtmauerwerk
- verputzt

B/D

- geschlämmt
- gestrichen

Aufbau

KALKSANDSTEIN-WAND

Die Mauerkonstruktion als Träger der verputzten Aussenwärmedämmung übernimmt die Tragfunktion.

DAMPFDIFFUSION

Das Kalksandstein-Mauerwerk weist keine Einschränkungen in der Systemwahl von Aussenisolationen auf. Die Schicht soll dampfbremsend, aber nicht dampfsperrend sein.

WÄRMESPEICHERUNG

Die Wärmespeicherung muss bei mehrschichtigen Wandkonstruktionen von der Schicht auf der warmen Seite erbracht werden. Sie gleicht kurzzeitige Heizungsunterbrechungen im Winter und Sonneneinstrahlung im Sommer aus. Daher hat sich für dauerbeheizte Gebäude die hohe Speichermasse des Kalksandstein-Mauerwerks besonders bewährt.

Die Massgenauigkeit des Kalksandstein-Mauerwerks schafft einen ebenen Untergrund für die Wärme-Dämmplatten. Diese werden entweder geklebt oder mechanisch befestigt. In beiden Fällen wird durch den planebenen Untergrund die Montage wesentlich vereinfacht.

SCHALLDÄMMUNG

Die Schalldämmung erfolgt vorwiegend durch Masse. Das Kalksandstein-Mauerwerk gewährleistet eine sehr gute Schalldämmung.

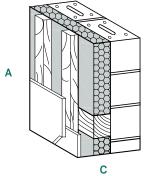
AUSSENWANDSYSTEME

Hinterlüftete Vorhangfassade

KONSTRUKTION AM BEISPIEL HINTERLÜFTETE VORHANGFASSADE

A Fassadenverkleidung:

- Wetterschutz
- Gestaltungselemente


Unterkonstruktion:

- Holz
- Metall

- B Kalksandsteinmauerwerk:
- Wärmespeicher
- Schallschutz
- Tragfunktion

B/D

Luftschall: R'w ≥ 50 dB

- C Wärmedämmung 80 140 mm:
- Hartschaumplatten oder
- Mineralfaserplatten

U-Wert: 0,36 - 0,23 W/m² K

Hinterlüftung ≥ 40 mm

Genügende Zu- und Abluftöffnungen

- D Innenraumgestaltung:
- Sichtmauerwerk
- verputzt
- geschlämmt
- gestrichen

Aufbau

Auch bei der hinterlüfteten Fassade erweist sich der Kalksandstein in mehr als einer Hinsicht als idealer Hintergrund.

KALKSANDSTEIN-WAND

Hier schöpft der Kalksandstein seine ganzen Vorteile aus. Die Wärmespeicherung muss bei mehrschichtigen Wandkonstruktionen von der Schicht der erwärmten Innenseite erbracht werden. Sie gleicht kurzzeitige Temperaturschwankungen aus (z. B. Heizungsunterbrechungen, Sonneneinstrahlung). Daher hat sich die hohe Speichermasse des Kalksandstein-Mauerwerks sehr gut bewährt. Dank der grossen Wandflächenmasse wird der Lärm absorbiert. Speziell bei vorgehängten Fassaden muss das Mauerwerk die Lasten der Verkleidung tragen. Als Untergrund für die Verankerung hat sich tragendes, massives Mauerwerk aus Kalksandsteinen bestens bewährt.

WÄRMEDÄMMSCHICHT

Die Dämmschicht liegt direkt auf dem Kalksandstein-Mauerwerk. In der Regel verwendet man Mineralfaserplatten (Glas- oder Steinwolle) oder Hartschaumplatten (Polystyrol). Werden Dämmplatten unter eine Holzlattung verlegt, kann auf eine zusätzliche Sicherung verzichtet werden, weil diese Funktion von der Lattung übernommen wird. Beim Verlegen zwischen der Lattung genügt ein seitliches Anstecken von verzinkten Nägeln an der Lattung, um die mechanische Befestigung sicherzustellen.

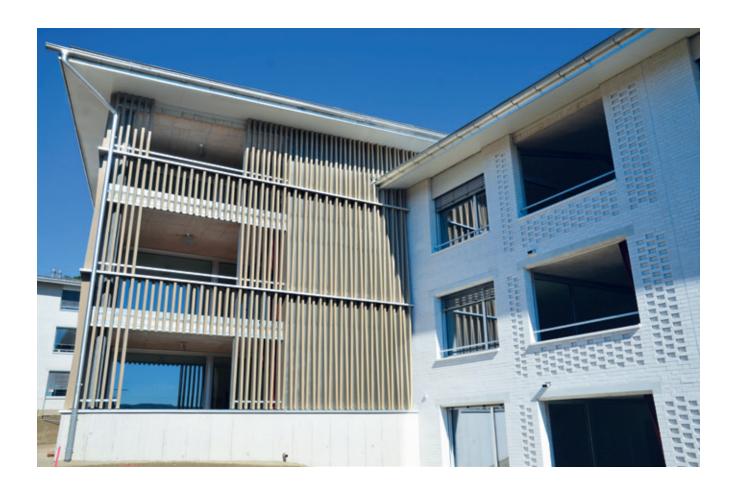
HINTERLÜFTUNG

Im Luftraum der Hinterlüftung zirkuliert die Luft infolge thermischen Auftriebs und durch Windeinwirkung. Der Belüftungsspalt soll in der Regel – je nach Art der Verkleidung – mindestens 40 mm betragen.

Eine genügende Belüftung wird im Sockel- und Dachbereich mit Zu- und Abluftquerschnitten von mindestens 100 cm/m² (Norm SIA 238) erreicht.

AUSSENWANDSYSTEME

UNTERKONSTRUKTION


Hinterlüftete Fassaden können mit Holz- oder Metall-Unterkonstruktionen ausgeführt werden.

Für kleinformatige Verkleidungen wird vorwiegend Holz als Unterkonstruktion verwendet, da eine einfache, kreuzweise Lattung genügt. Das Holz ist vor dem Einbau mit einem Holzschutz zu behandeln.

Zur Verbindung der Verkleidungselemente mit der Unterkonstruktion und einzelner Teile der Unterkonstruktion miteinander müssen nicht-rostende Verbindungsmittel verwendet werden.

FASSADENVERKLEIDUNG

Faserzementplatten, Holzverkleidungen, Glasfaser-beton, Metallbleche, Betonelemente, keramische Platten, Natursteinplatten usw. sind mögliche Materialien für die Ausführung.

BAUSTOFFKENNWERTE

KENNWERTE KS MAUERWERK / MAUERSTEINE MIT NORMALMÖRTEL

Überprüfung aktueller Normen

Mit über 100 Jahren Erfahrung in der Kalksandstein-Produktion sowie den permanenten Qualitätskontrollen genügen die Produkte unserer Mitgliedsfirmen höchsten Ansprüchen.

Jedes der Herstellerwerke verfügt über eine werkseigene Produktionskontrolle (WPK). Die Qualität der Kalksandsteine wird laufend gemäss den aktuellen Normen überprüft:

KENNWERTE MAUERWERK MK GEMÄSS NORM SIA 266

Eigenschaft	Grundlage	Wert
Druckfestigkeit f _x	SIA 266	7 N/mm²
Biegezugfestigkeit f _{fx}	SIA 266	0,15 N/mm²
Elastizitätsmodul E _{xk}	SIA 266	7 kN/mm²
Schubmodul G _k	SIA 266	2,8 kN/mm ²
Endkriechwert φ	SIA 266	1,5
Endschwindmass mm/m	SIA 266	-0,2 (0/00)
Temperaturausdehnungskoeffizient αT	SIA 266	9*10 ⁻⁶ /K

KENNWERTE MAUERSTEINE FÜR MAUERWERK MK VOLLSTÄNDIGES CE-ZEICHEN GEMÄSS NORMEN SN EN 771-2 UND SIA 266

Eigenschaft	Grundlage	Wert
Form und Ausbildung	Herstellerdeklaration	Gruppe 2 (gemäss SN EN 1996-1-1)
Rohdichteklasse 1,6	Herstellerdeklaration	1410-1600 kg/m ³
Rohdichteklasse 1,8	Herstellerdeklaration	1610-1800 kg/m ³
Rohdichteklasse 2,0	Herstellerdeklaration	1810-2000 kg/m ³
Norminierte mittlere Druckfestigkeit \mathbf{f}_{kb}	SIA 266	22 N/mm ² (25 N/mm ²) 1)
Äquivalente Wärmeleitfähigkeit $\lambda_{10,trocken}$ (P=90%)	SN EN 1745	0,8 W/mK
Frostbeständigkeit	Herstellerdeklaration	gemäss SN EN 772-18 erfüllt
Wasserdiffusionskoeffizient $\boldsymbol{\mu}$	SN EN 1745	5/25
Bandverhalten	SN EN 771-2	Euroklasse A1
Wasseraufnahme C_w	Herstellerdeklaration	8 – 12 %
Übliche Feuchtedehnung	Herstellerdeklaration	Leistung nicht bestimmt
Verbundfestigkeit	SN EN 998-2	0,15 N/mm² (Tabellenwert)
Gefährliche Substanzen	Herstellerdeklaration	keine
Lochflächenanteil	Herstellerdeklaration	Max. 50 %
Kapillare Wasseraufnahme	Herstellerdeklaration	5 – 10 g/dm² min.

¹⁾ KS 12/14, KS 15/14 und KS 18/14 sind auch mit erhöhter Druckfestigkeit (\geq 25 mm²) erhältlich.

BAUSTOFFKENNWERTE

KENNWERTE KS MAUERWERK / MAUERSTEINE MIT NORMALMÖRTEL

KENNWERTE MAUERMÖRTEL FÜR TRAENDES MAUERWERK MK GEMÄSS NORM SIA 266

Eigenschaft	Grundlage	Wert
Druckfestigkeit f _{mk}	SIA 266	15 N/mm²
Korngrössenbereich	Herstellerdeklaration	gemäss SN EN 1015-1 zu bestimmen
Trockenrohdichte	Herstellerdeklaration	gemäss SN EN 1015-1 zu bestimmen

Es ist zu beachten, dass die von den Herstellern deklarierten Werte von Produzent zu Produzent variieren können. Beachten Sie auch die Produktzertifikate und Konformitätserklärung auf www.kalksandstein.ch

TECHNISCHE ANGABEN

ZUR AUSFÜHRUNG VON KALKSANDSTEIN-MAUERWERK

STEIN- UND MÖRTELBEDARF FÜR KALKSANDSTEIN-MAUERWERK

Bezeichnung	Wanddicke	Rohdichteklasse (RDK) ¹⁾	Abmessung	pro Palette 1)	Steinbedarf	Mörtel- bedarf	Flächenmas- se roh inkl. Mörtel ¹⁾
	[mm]		LxBxH [mm]	[m²]	[Stk/m²]	[Liter/m²]	[ca. kg/m ²]
K 10/14	100	1.6	250/100/140	6,5	26	21	180
K 10/19		1.6	250/100/190	5,9	19	17	170
K 10/6,5		1.6	250/100/65	6,6	51	36	190
K 12/14	120	1.6	250/120/140	5,5	26	25	210
K 12/19		1.6	250/120/190	5,1	19	20	200
K 12/6,5		2.0	250/120/65	5,7	51	43	270
K 12/9		1.6	250/120/90	5,1	38	34	220
K 15/14	145	1.6	250/145/140	4,6	26	30	250
K 15/14 S		2.0	250/145/140	4,6	26	30	300
K 15/19		1.6	250/145/190	4,2	19	25	240
K 15/6,5		2.0	250/145/65	4,7	51	52	330
K 15/9		1.6	250/145/90	4,2	38	41	270
K 18/14	180	1.6	250/180/140	3,7	26	37	320
K 18/14 S		2.0	250/180/140	3,7	26	37	370
K 18/19		1.6	250/180/190	3,4	19	31	300
K 18/6,5		1.6	250/180/65	3,8	51	65	340
K 18/9		1.6	250/180/90	3,4	38	50	330
K 20/14	200	1.6	250/200/140	3,7	26	41	350
K 20/19		1.6	250/200/190	3,4	19	34	340
K 20/6,5		1.6	250/200/65	2,8	51	72	380
K 20/9		1.6	250/200/90	3,4	38	56	360
Technische Angaben zur Qu	uervermaueru 						
K 12/14 K 15/14		1.6 1.6	120/250/140 145/250/140	2,8 2,8	51 43	72 65	450 450
K 18/14	250	1.6	180/250/140	2,8	35	59	450
K 20/14		1.6	200/250/140	3,0	32	56	450

1) Hersteller abhängig

Weitere technische Informationen: www.hunziker-kalksandstein.ch

TECHNISCHE ANGABEN

BAUSCHALL-DÄMMASS NACH STEINSTÄRKE UND BAUSTOFF

Baustoff	Steinstärke (verputzt)					
Daustoii	120 – 125	145 – 150	175 – 180	200		
	[mm]	[mm]	[mm]	[mm]		
Kalksandstein normal	48	50	53	54		
Kalksandstein schwer	-	52	54	-		
Backstein modul	45	47	48	49		
Backstein schwer	48	50	52	54		
Porenbeton MB	43	-	-	-		
Holz-Leichtbau (Spanplatte/Mineralwolle)	38	-	-	-		

Bewährtes Bauschall-Dämmass R`w in dB (ca.).

Wenn die Anforderungen gemäss SIA-Norm 181 "Schallschutz im Hochbau" eingehalten werden sollen, ist die Ausführung der Zwischenwände mit einem Flächengewicht von mindestens 290 kg/m² angezeigt, damit die Nebenwegübertragungen reduziert werden. 145 mm starke, verputzte Kalksandsteinwände erfüllen diese Anforderungen.

BRANDSCHUTZ

Das Kalksandstein-Mauerwerk weist eine sehr gute Feuerwiderstandsfähigkeit auf.

MINDESTWANDDICKE T $_{\rm F}$ IN mm GEMÄSS SIA 266, ART. 4.6 KALKSANDSTEIN VERPUTZT, VKF KLASSIERUNG

Wände	Mauerwerk		Feuer	rwiderstandsklasse			
wanue	Mauer werk	F30	F60	F90	F120	F180	
Tragend, nicht raumabschliessend R H max. < 27d	MK	120	150	150	180	250	
Tragend, raumabschliessend REI	MK	120	120	150	150	200	
Nichttragend, raumabschliessend E H max. <40d	MK	100	100	150	150	180	

Weitere technische Informationen: www.hunziker-kalksandstein.ch

TECHNISCHE BERATUNG

KALKSANDSTEIN

Unsere Technischen Verkaufsberater stehen beratend für alle Planungs-, Konstruktions- und Ausführungslösungen von Kalksandstein-Mauerwerk für Sie zur Verfügung. Unsere Beratung umfasst auch die Bearbeitung von Grossaufträgen im Zusammenarbeit mit den Bauherren, Architekten und dem Baumaterialhandel.

Verkaufsgebiet	Ansprechpartner	Kontakt	Firmenadresse
Schweiz	Thomas Benz	Tel.: 056 444 25 25 Mobil: 079 642 25 38 thomas.benz@hksag.ch	Hunziker Kalksandstein AG H+H Group Aarauerstrasse 75 5200 Brugg

Weitere Informationen finden Sie unter folgendem OR-Code

WANDSTÄRKE 100 + 120 mm

WANDSTÄRKE 100 mm *

Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paketinhalt		Paketgewicht
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]	[ca. kg]
K 10/14	250 x 100 x 140	26	5,50	168	6,5	924
K 10/19	250 x 100 x 190	19	7,30	112	5,9	818
K 10/6,5	250 x 100 x 65	51	2,50	336	6,6	840

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

WANDSTÄRKE 120 mm *

Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paket	inhalt	Paketgewicht
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]	[ca. kg]
K 12/14	250 x 120 x 140	26	6,40	144	5,50	922
K 12/13,5 ¹⁾	250 x 120 x 135	19	6,00	144	5,30	864
K 12/14 halber Stein	120 x 120 x 140	-	3,70	240	_	888
K 12/19	250 x 120 x 190	19	8,50	96	5,10	816
K 12/19 halber Stein	120 x 120 x 190	-	5,20	192	_	999
K 12/6,5	250 x 120 x 65	51	3,70	288	5,70	1.066
K 12/9	250 x 120 x 90	38	4,10	192	5,10	788

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

¹⁾ Lieferfrist auf Anfrage.

WANDSTÄRKE 120 mm

SPEZIALSTEINE 120 mm *

SPEZIALSTEINE 120 mm							
Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paketinhalt			
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[m²]			
K 12/14 ¹⁾ Eckstein 45°	250 + 120 × 120 × 140	_	8,20	_			
K 12/14 ¹⁾ Installationsstein geschnitten	250 x 120 x 140 Schlitz 170 x 40	26	5,80	5,50			
	250 x 120 x 140	_	_	_			
		_	6,10	_			
K 12/14 ¹⁾ Dosenstein	Loch-∅ 85 mm Stufenbohrung	_	6,00	_			
		_	5,20	_			
	Doppeldose-∅ 85 mm Stufenbohrung	_	5,60	_			

 $^{^{\}ast}$ Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

Andere Anordnungen (Doppeldosen) oder andere Durchmesser der Dosenöffnungen auf Anfrage. Installations- und Dosensteine sind auch für K 12/19 Modul erhältlich. ¹⁾

¹⁾ Lieferfrist auf Anfrage.

WANDSTÄRKE 150 mm / SPEZIALSTEINE

WANDSTÄRKE 150 mm *

WANDSTARKE 150 mm						
Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paketinhalt		Paketgewicht
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]	[ca. kg]
K 15/14	250 x 145 x 140	26	7,7	120	4,6	924
K 15/13,5 ¹⁾	250 x 145 x 135	27	7,2	120	4,4	864
K 15/14 ¹⁾ Rillenstein	250 x 145 x 140	26	9,4	120	4,6	1.128
K 15/14 ¹⁾ schwer	250 x 145 x 140	26	9,5	120	4,6	1.140
K 15/14 halber Stein	120 x 145 x 140	_	4,5	200	_	900
K 15/19	250 x 145 x 190	19	10,4	80	4,2	832
K 15/19 halber Stein	120 x 145 x 190	_	6,1	160	_	976
K 15/6,5	250 x 145 x 65	51	45,	240	4,7	1.080
K 15/9	250 x 145 x 90	38	5,0	160	4,2	800

 $^{{\}rm *Abbildungen\ der\ Steine\ sind\ exemplarisch,\ \"{A}nderungen\ vorbehalten}.$

SPEZIALSTEINE 150mm *

Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paketinhalt
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[m²]
K 15/14 ¹⁾ Eckstein 45°	250 + 120 x 145 x 140	_	9,7	_
K 15/14 ¹⁾ Installationsstein geschnitten	250 x 145 x 140 Schlitz 170 x 40	26	6,8	4,6
K 15/14 ¹⁾ Dosenstein	250 x 145 x 140	_	_	-
	Loch-Ø 72 mm	_	7,1	_
	Loch-Ø 72/85 mm Stufenbohrung	_	7,0	_
	Doppeldose-Ø 72 mm	_	6,8	_
	Doppeldose-Ø 72/85 mm Stufenbohrung	_	6,6	_

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

Andere Anordnungen (Doppeldosen) oder andere Durchmesser der Dosenöffnungen auf Anfrage. Installations- und Dosensteine sind auch für K 15/19 Modul erhältlich. ¹⁾

WANDSTÄRKE 180 mm / SPEZIALSTEINE

WANDSTÄRKE 180 mm *

WANDSTARKE 180 mm								
Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paket	inhalt	Paketgewicht		
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]	[ca. kg]		
K 18/14	250 x 180 x 140 Doppelgriffloch	26	9,8	96	3,7	941		
K 18/13,5 ¹⁾	250 x 180 x 135 Doppelgriffloch	27	9,1	96	3,5	874		
K 18/14 ¹⁾ schwer	120 x 180 x 140	26	11,6	96	3,7	1.114		
K 18/14 halber Stein	120 x 180 x 140	-	5,6	160	_	896		
K 18/19	250 x 180 x 190 Doppelgriffloch	19	13,1	64	3,4	839		
K 18/19 halber Stein	120 x 180 x 190	-	7,8	128	_	999		
K 18/6,5	250 x 180 x 65	51	4,5	192	3,8	864		
K 18/9	250 x 180 x 90	38	6,3	128	3,4	807		

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

SPEZIALSTEINE 180 mm *

Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paket	inhalt
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]
K 18/14 ¹⁾ Installationsstein geschnitten	250 x 180 x 140 Schlitz 170 x 40	26	9,3	_	_
K 18/14 ¹⁾ Dosenstein	250 x 180 x 140				
		_	9,3	_	_
	Loch-∅ 85 mm Stufenbohrung	_	9,2	_	-
			9,0	_	-
	Doppeldose-∅ 85 mm Stufenbohrung	_	8,8	_	_

 $[\]mbox{*}$ Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

Andere Anordnungen (Doppeldosen) oder andere Durchmesser der Dosenöffnungen auf Anfrage. Installations- und Dosensteine sind auch für K 18/19 Modul erhältlich. ¹⁾

¹⁾ Lieferfrist auf Anfrage.

WANDSTÄRKE 200 mm

WANDSTÄRKE 200 mm *

Bezeichnung	Abmessung	Steinbedarf	Steingewicht	Paketinhalt		Paketgewicht
	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]	[ca. kg]
K 20/14	250 x 200 x 140 Doppelgriffloch	26	10,7	96	3,7	1.028
K 20/14 halber Stein	120 x 200 x 140	-	6,5	160	-	1.040
K 20/19	250 x 200 x 190 Doppelgriffloch	19	14,5	64	3,4	928
K 20/6,5	250 x 200 x 65	51	5,0	192	2,8	960
K 20/9	250 x 200 x 90	38	6,8	128	3,4	871

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

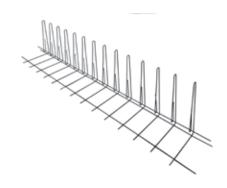
SONDERANFRAGEN

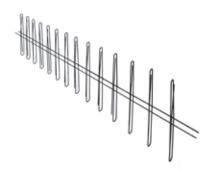
K 12/14, K 15/14 und K 18/14 sind auch mit erhöhter Druckfestigkeit (\ge 25 /N7mm²) auf Bestellung erhältlich.

¹⁾ Lieferfrist auf Anfrage.

SPEZIALSTEINE VER

K-VER *

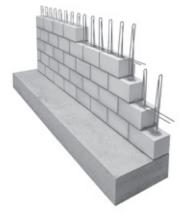



Bezeichnung	Abmessung	Steinbedarf Steingewicht		Pake	tinhalt
K-VER für vertikal bewehrtes Mauerwerk	LxBxH [mm]	[Stk/m²]	[ca.kg/Stk]	[Stk]	[m²]
K 15/14 VER 1)	250 x 145 x 140	26	7,8	76	3,7
K 18/14 VER 1)	250 x 180 x 140	26	10,0	72	2,8

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten

BEWEHRUNGSKÖRBE Stahl S 555, feuerverzinkt, für Kalksandsteinmauerwerk

Bezeichnung	Bügelhöhe	Bügelabstand	Länge	Durch- messer	Gewicht	Palette
	[mm]	[mm]	[mm]	[mm]	[kg/Stk]	[Stk]
Typ 43/13 A ¹⁾ Anschlusskorb an Betondecke	430	130	1950	5	4	60
Typ 55/13 B ¹⁾ über zwei Steinlagen gestossen	550	130	1950	5	4	100


MATERIALVERBRAUCH pro m²

Mauersteine K-VER 26 Stück Mörtel K 15/14 VER 64 Liter K 18/14 VER 71 Liter

Bewehrung

Typ 43/13 A 1,0 m¹/m¹ Wandscheibe

Typ 55/13 B 3,4 m¹/m

Weitere technische Informationen finden Sie in der speziellen K-VER-Dokumentation, die unter **www.hunziker-kalksandstein.ch** als PDF-Download zur Verfügung steht.

1) Lieferfrist auf Anfrage.

BETONSTÜRZE

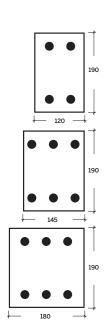
ZU KALKSANDSTEIN MAUERWERK

	Querschnitt	Breite	Höhe	Baulänge	Gewicht
		[mm]	[mm]	[mm]	[ca. kg/Stk]
				1.030	17
	100 65			1.290	21
65	100 x 65 vorgespannt	100	65	1.550	25
100 —	10.800pat			1.810	30
				2.070	34
				1.030	17
				1.290	22
				1.550	26
	120 x 65			1.810	30
65	vorgespannt	120	65	2.070	34
120 -				2.330	39
				2.590	43
				2.850	47
				3.110	52
				1.030	21
				1.290	26
				1.550	31
─ ───────────────────────────────────	145 x 65 vorgespannt	145		1.810	37
65			65	2.070	42
145				2.330	47
				2.590	53
				2.850	58
				3.110	63
				1.030	26
				1.290	33
				1.550	40
	180 x 65	100	CE	1.810	46
65	vorgespannt	180	65	2.070 2.330	53
180				2.550	60 66
				2.850	73
				3.110	80
				1.030	34
				1.030	42
†	200 x 65	200	65	1.550	51
65	vorgespannt	200	0.5	1.810	59
200 —				2.070	68
				2.070	00

Verblendete Stürze auf Anfrage (Lieferzeit auf Anfrage)

Betonstürze wirken als Zugbänder tragend im Verbund mit der Übermauerung (mindestens 900 mm). Die volle Tragfähigkeit ist erst nach dem Erhärten der Übermauerung vorhanden. Der Einbau erfordert ab 1,8 m Spannweite einen Spriessen.

Andere Abmessungen/Speziallängen auf Anfrage. Lieferbar innerhalb 2-3 Wochen (gilt auch für Folgeseite).


BETONSTÜRZE

ZU KALKSANDSTEIN MAUERWERK

	Querschnitt	Breite	Höhe	Baulänge	Gewicht
		[mm]	[mm]	[mm]	[ca. kg/Stk]
				1.030	35
				1.290	43
_				1.550	52
• •	100 x 140			1.810	61
140	schlaff bewehrt	100	140	2.070	70
				2.330	78
100				2.590	87
				2.850	96
				3.110	105
				1.030	42
				1.290	52
				1.550	63
	120 x 140			1.810	73
140	schlaff bewehrt	120	140	2.070	84
				2.330	94
120 —				2.590	105
				2.850	115
				3.110	126
				1.030	51
				1.290	63
				1.550	76
	145 x 140			1.810	89
140	schlaff bewehrt	145	140	2.070	102
				2.330	115
				1.590	127
				2.850	140
				3.110	153
				1.030	64
				1.290	80
1				1.550	96
140	180 x 140	190	140	1.810 2.070	112 129
• • •	schlaff bewehrt	180	140	2.070	145
				1.590	161
				2.850	177
				3.110	193
				1.030	72
				1.290	89
				1.550	107
				1.810	125
140	200 x 140	200	140	2.070	144
• • •	schlaff bewehrt	230	1,0	2.330	161
- 200 -				2.590	180
				2.850	198
				3.110	216
		I	I	2.22	

BETONSTÜRZE

ZU KALKSANDSTEIN MAUERWERK

Querschnitt	Breite	Höhe	Baulänge	Gewicht
	[mm]	[mm]	[mm]	[ca. kg/Stk]
120 x 190 schlaff bewehrt			1.030	56
			1.290	70
	120	190	1.550	84
			1.810	97
			2.070	111
	145		1.030	69
145 100			1.290	87
145 x 190 schlaff bewehrt		190	1.550	105
			1.810	122
			2.070	140
			1.030	85
100 100			1.290	107
180 x 190 schlaff bewehrt	180	190	1.550	128
			1.810	150
			2.070	171

Verblendete Stürze auf Anfrage (Lieferzeit auf Anfrage)

Betonstürze wirken als Zugbänder tragend im Verbund mit der Übermauerung (mindestens 900 mm). Die volle Tragfähigkeit ist erst nach dem Erhärten der Übermauerung vorhanden. Der Einbau erfordert ab 1,8 m Spannweite einen Spriessen.

Andere Abmessungen/Speziallängen auf Anfrage. Lieferbar innerhalb 2-3 Wochen.

ZUBEHÖR

WINKELEISEN

Feuerverzinktes Winkeleisen zur Befestigung der Mauerkrone bei nichttragenden Wänden. Die Winkeleisen werden seitlich ans Mauerwerk geführt und an der Decke befestigt. Hinweis: Befestigung der Winkeleisen z. B. mit Segmentanker.

aus 4-mm-Stahlblech, warm gewalzt (Stahlqualität: DD11 STW22)

Bezeichnung	Abmessung	Gewicht
	LxBxH [mm]	[kg/Stk]
Winkeleisen	250 x 150 x 250	3,2

MAUERWERKSPERRE

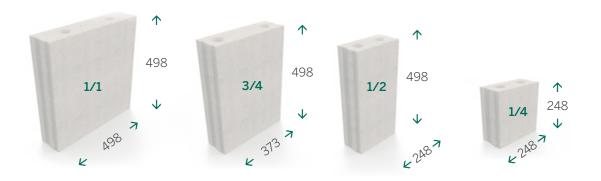
aus PE-LD, schwarz, 0,35 mm stark, beidseitig gerippt, aufgeraut, Temperaturbeständigkeit -50°C bis +80°C

Bezeichnung	Abmessung	Gewicht
	Breite/Länge	[ca. g/m²]
	12,5 cm x 50 m	
Mauerwerksperre	15,0 cm x 50 m	3,2
	20,0 cm x 50 m	3,2

K-REPARATUR-SET

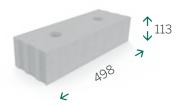
INHALT

Menge	Material
500 g	BL Aufbaumörtel, Farbton 469
150 g	BL Stabilisator
1	Gipsbecher
1	Stukkeisen
2	Pinsel
1	Schwamm weich
1	Schwamm hart


DAS H+H BAUSYSTEM MIT KALKSANDSTEIN

Das Bausystem besteht aus abgestimmten Steinformaten und ermöglicht so das Herstellen kleingliedriger Massketten im 12,5 cm-Längen- und Höhenraster im Baukastenprinzip.

KS-QUADRO/ PLANELEMENT (KS XL) Regelformat/Ergänzungsformate


KS-QUADRO Ergänzungssteine

KS-KIMMSTEINE

KS ISO-KIMMSTEINE

KS-GIEBELSTEINE

KS-STÜRZE

PLANUNGSSERVICES FÜR DAS H+H BAUSYSTEM

Technische Bearbeitung

Anhand der Ausführungsplanung und der Statik zu einem Objekt erstellt H+H Wandabwicklungen und achtet konsequent auf eine Optimierung durch H+H Ergänzungsformate.

Die frühzeitige Bereitstellung aller relevanten Planungsunterlagen (Ausführungspläne/Positionspläne/Checkliste) ist erforderlich.

Erstellung objektspezifischer Verlegepläne

Einfaches und zügiges Erstellen von Mauerwerk aller Rohbau-Wandmasse durch Ergänzungsformate verschiedener Höhen und Längen.

Reduzierung der Anzahl von Passelementen auf der Baustelle und somit sehr geringer Schnittfaktor durch die Vorplanung mit Ergänzungsformaten.

Die Verlegepläne werden nach Eingang der Planungsunterlagen innerhalb von ca. 10 Arbeitstagen dem Auftraggeber übersandt.

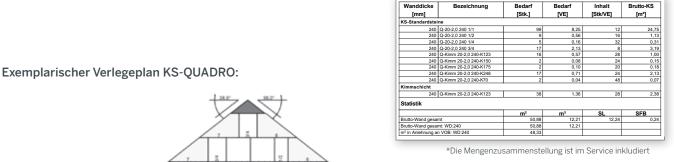
Planänderungsmanagement

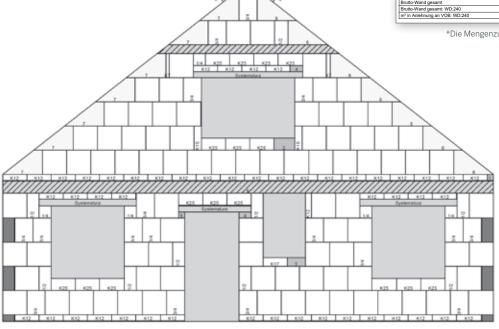
Effizienter Informations- und Dokumentenaustausch über Plattformen der Auftraggeber bzw. über das H+H Portal planXchange bzw. per Mail.

Prüfung und Freigabe der Verlegepläne erfolgt durch den Auftraggeber oder dessen Beauftragten.

Optimierte Terminplanung für den Materialabruf

Der Aufwand für die Arbeitsvorbereitung für das Rohbaumauerwerk wird deutlich reduziert. Die Bestellung kann je Bauabschnitt erfolgen und die Materialanlieferung läuft just-in-time ab. Alle am Projekt Beteiligten profitieren zudem von der exakteren Materialabrechnung.




Nach Freigabe der Verlegepläne kann anhand der Massenermittlung der Abruf mit den H+H Bestelllisten terminiert erfolgen.

Bestellformulare für unsere Mauerwerksprodukte unter:

https://www.hplush.de/de/planen-und-bauen/ausführung/bestellung-und-anlieferung

Exemplarisches Dokument für die Mengenzusammenstellung KS-QUADRO:

TECHNISCHE ANGABEN

KS-MITTELFORMATE /AKUSTIK/AKUSTIK PLUS

KS-BAUPLATTEN 1) *

Bezeichnung	Wand- dicke	Abmessung	RDK	Stein- gewicht	Mörtel- bedarf	Stein- bedarf	Paketinhalt		alt
	[mm]	LxBxH [mm]		[ca.kg/m ²]	[ca.kg/m ²]	[Stk/m ²]	[Stk]	[m²]	[ca.kg]
KS-BP 70	70	498 x 70 x 248	2,0	133	1,47	8,00	64	8,00	1.064
KS-BP100	100	498 x 100 x 248	1,4	138	1,50	8,00	40	5,00	690

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten

KS-PLAN E AKUSTIK 1) *

Bezeichnung	Wand- dicke	Abmessung	RDK	Stein- gewicht	Mörtel- bedarf	Stein- bedarf	Paketinhalt		alt
	[mm]	LxBxH [mm]		[ca.kg/m ²]	[ca.kg/m ²]	[Stk/m²]	[Stk]	[m²]	[ca.kg]
KS-PE 115	115	248 x 115 x 248	1,8	190	1,73	16,00	96	6,00	1.140
KS-PE 150	150	248 x 150 x 248	1,8	251	2,50	16,00	80	5,00	1.225
KS-PE 175	175	248 x 175 x 248	1,8	288	2,63	16,00	64	4,00	1.152
KS-PE 200	200	248 x 200 x 248	2,0	380	3,00	16,00	48	3,00	1.140
KS-PE 240	240	248 x 240 x 248	2,0	456	3,60	16,00	32	2,00	912
KS-PE 300	300	248 x 300 x 248	2,0	570	4,50	16,00	32	2,00	1.140

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

KS-PLAN AKUSTIK PLUS 1) *

Bezeichnung	Wand- dicke	Abmessung	RDK	Stein- gewicht	Mörtel- bedarf	Stein- bedarf	Paketinhal		alt
	[mm]	LxBxH [mm]		[ca.kg/m ²]	[ca.kg/m ²]	[Stk/m²]	[Stk]	[m²]	[ca.kg]
KS-P 150	150	248 x 150 x 248	2,2	314	2,50	16,00	64	4,00	1.256
KS-P 175	175	248 x 175 x 248	2,2	366	2,63	16,00	48	3,00	1.098
KS-P 200	200	248 x 200 x 248	2,2	418	3,00	16,00	48	3,00	1.254
KS-P 240	240	248 x 240 x 248	2,2	502	3,60	16,00	32	2,00	1.004

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten. Sie zeigen die Unterseite als Prinzipdartellung

¹⁾ Für diese KS-Formate liefern wir die entsprechende Menge KS-Dünnbettmörtel mit. Die Menge wird auf volle Gebinde aufgerundet und mit 1.40 CHF/kg berechnet. Aus Produkthaftungsgründen ist eine Lieferung ohne KS-Dünnbettmörtel nicht möglich. Die Abholung ab Lager Brugg ist nur nach Vereinbarung möglich.

KALKSANDSTEIN DUNNBETTMORTE

TECHNISCHE ANGABEN

KS-UND KS-ISO AUSGLEICHSTEINE

KS-AUSGLEICHSTEINE*

Bezeichnung	Wanddicke Abmessung		RDK	Stein- gewicht	Paket	inhalt
	[mm]	LxBxH [mm]		[ca. kg/Stk]	[m²]	[ca. kg]
K5		489 x 115 x 50		5,5	48	523
K7	115	489 x 115 x 70	2,0	7,8	48	758
K10		489 x 115 x 100		11,5	40	912
K5		489 x 150 x 50		7,2	32	458
K7	150	489 x 150 x 70	2,0	10,0	32	640
K10		489 x 150 x 100		14,3	32	912
K5		489 x 175 x 50		8,3	32	531
K7	175	489 x 175 x 70	2,0	12,2	32	778
K10		489 x 175 x 100		17,3	24	833
K5		489 x 200 x 50		9,5	24	456
K7	200	489 x 200 x 70	2,0	13,3	24	638
K10		489 x 200 x 100		19,0	24	912
K5		489 x 240 x 50		11,4	24	547
K7	240	489 x 240 x 70	2,0	16,6	24	799
K10		489 x 240 x 100		23,7	16	760

 $^{{}^*\}operatorname{Abbildungen}\operatorname{der}\operatorname{Steine}\operatorname{sind}\operatorname{exemplarisch}, {}^*\operatorname{Anderungen}\operatorname{vorbehalten}.$

Sonderhöhen auf Anfrage.

Die Abholung ab Lager Brugg ist nur nach Vereinbarung möglich.

KS-ISO-AUSGLEICHSTEINE*

alle KS-ISO-Ausgleichsteine in KS 20-1,2 , Wärmeleitfähigkeit $\lambda_{\rm B}$ = 0,33 W/(mK)

Bezeichnung	Wanddicke	Abmessung	RDK	Stein- gewicht	Paket	inhalt
	[mm]	LxBxH [mm]		[ca. kg/Stk]	[m²]	[ca.kg]
KS-ISO 115	115	489 x 115 x 113	1,2	7,4	48	710
KS-ISO 150	150	489 x 150 x 113	1,2	9,6	40	770
KS-ISO 175	175	489 x 175 x 113	1,2	11,3	32	720
KS-ISO 200	200	489 x 200 x 113	1,2	12,8	32	820
KS-ISO 240	240	489 x 240 x 113	1,2	15,4	24	740

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

Sonderhöhen auf Anfrage.

Die Abholung ab Lager Brugg ist nur nach Vereinbarung möglich.

TECHNISCHE ANGABEN

KS-QUADRO E

KS-QUADRO E *

Regelformat

Ergänzungsformate:

Bezeichnung	Wand- dicke	Abmessung	RDK	Stein- gewicht	Mörtel- bedarf	Stein- bedarf	Paket	tinhalt
	[mm]	LxBxH [mm]		[ca.kg/m ²]	[ca.kg/m ²]	[Stk/m²]	[m²]	[ca.kg]
KS-QUADRO E 1/1		498 x 115 x 498			0,87	4,00	5,00	1.005
KS-QUADRO E 3/4		373 x 115 x 498			0,87	5,33	3,75	754
KS-QUADRO E 3/4 flach	115	498 x 115 x 373	1,8	201	1,31	5,33	3,75	754
KS-QUADRO E 1/2		248 x 115 x 498			0,87	8,00	5,00	1.005
KS-QUADRO E 1/2 flach		498 x 115 x 248			1,73	8,00	5,00	1.005
KS-QUADRO E 1/1		498 x 150 x 498			1,13	4,00	4,00	1.048
KS-QUADRO E 3/4		373 x 150 x 498			1,13	5,33	3,00	786
KS-QUADRO E 3/4 flach	150	498 x 150 x 373	1,8	262	1,70	5,33	3,00	786
KS-QUADRO E 1/2		248 x 150 x 498			1,13	8,00	4,00	1.048
KS-QUADRO E 1/2 flach		498 x 150 x 248			2,25	8,00	4,00	1.048
KS-QUADRO E 1/1		498 x 175 x 498			4,00	4,00	3,00	918
KS-QUADRO E 3/4		373 x 175 x 498			5,33	5,33	2,25	688
KS-QUADRO E 3/4 flach	175	498 x 175 x 373	1,8	306	5,33	5,33	2,25	688
KS-QUADRO E 1/2		248 x 175 x 498			8,00	8,00	3,00	918
KS-QUADRO E 1/2 flach		498 x 175 x 248			8,00	8,00	3,00	918
KS-QUADRO E 1/1		498 x 200 x 498			4,00	4,00	3,00	1.140
KS-QUADRO E 3/4		373 x 200 x 498			5,33	5,33	2,50	855
KS-QUADRO E 3/4 flach	200	498 x 200 x 373	2,0	380	5,33	5,33	2,50	855
KS-QUADRO E 1/2		248 x 200 x 498			8,00	8,00	3,00	1.140
KS-QUADRO E 1/2 flach		498 x 200 x 248			8,00	8,00	3,00	1.140
KS-QUADRO E 1/1		498 x 240 x 498			4,00	4,00	2,00	912
KS-QUADRO E 3/4		373 x 240 x 498			5,33	5,33	1,50	684
KS-QUADRO E 3/4 flach	240	498 x 240 x 373	2,0	456	5,33	5,33	1,50	684
KS-QUADRO E 1/2		248 x 240 x 498			8,00	8,00	2,00	912
KS-QUADRO E 1/2 flach		498 x 240 x 248			8,00	8,00	2,00	912
KS-QUADRO E 1/1		498 x 300 x 498			4,00	4,00	2,00	1.140
KS-QUADRO E 3/4	300	373 x 300 x 498	2,0	570	5,33	5,33	1,50	855
KS-QUADRO E 1/2	300	248 x 300 x 498	2,0	3/0	8,00	8,00	2,00	1.140
KS-QUADRO E 1/2 flach		498 x 300 x 248			8,00	8,00	2,00	1.140

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

Steinrohdichteklasse 2,2: Liefermöglichkeiten und Preise auf Anfrage.

Für KS-QUADRO und KS-QUADRO E liefern wir die entsprechende Menge KS-Dünnbettmörtel mit. Die Menge wird auf volle Gebinde aufgerundet und mit 1.40 CHF/kg berechnet. Aus Produkthaftungsgründen ist eine Lieferung ohne KS-Dünnbettmörtel nicht möglich. Die Abholung ab Lager Brugg ist nur nach Vereinbarung möglich.

TECHNISCHE ANGABEN

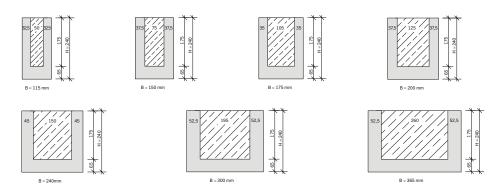
KS-STÜRZE/KS-ERGÄNZUNGSFORMATE

KS-SYSTEMSTÜRZE *

Bezeichnung	Sturz- breite	Sturz- höhe	Gewicht	Sturzlänge					
	[mm]	[mm]	[kg/lfm]	[m]					
KS-Systemsturz 115	115		27						
KS-Systemsturz 150	150		36						
KS-Systemsturz 175	175	123	41	1,25	1,50	1,75	2,00	2,25 1)	2,501)
KS-Systemsturz 200	200		47						
KS-Systemsturz 240	240		57						

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

1) Auf Anfrage Die Abholung ab Lager Brugg ist nur nach Vereinbarung möglich.


KS-U-SCHALEN *

Bezeichnung	Wanddicke	Abmessung	RDK	Stein- gewicht	Paket	inhalt
	[mm]	LxBxH [mm]		[ca. kg/Stk]	[m²]	[ca.kg]
KS-U 115	115	240 x 115 x 240	2,0	7,5	96	720
KS-U 150	150	240 x 150 x 240	2,0	11,6	64	742
KS-U 175	175	248 x 175 x 240	2,0	12,5	48	600
KS-U 200	200	240×200×240	2,0	15,1	48	725
KS-U 240	240	248 x 240 x 240	2,0	15,7	32	502
KS-U 300	300	240 x 300 x 240	2,0	17,5	32	560

^{*} Abbildungen der Steine sind exemplarisch, Änderungen vorbehalten.

Die Abholung ab Lager Brugg ist nur nach Vereinbarung möglich.

Abbildungen und Maße exemplarisch. Das untere Innenmaß der U-Schalen ist ca. 2 cm geringer als das obere. Weitere Informationen und Querschnitte unter https://www.hplush.de/de/kalksandstein/ks-u-schalen

Hunziker Kalksandstein AG H+H Group Aarauerstrasse 75 5200 Brugg

Fon +41 56 460 54 66

HUNZIKER KALKSANDSTEIN H+H Group

hunziker-kalksandstein.ch